
Kids Discovering the  
Beauty of Math with  

22 Ready-to-Go Activities

Ann Kajander

Ages 6–11

K
a

ja
nd

e
r

B
ig

 Id
ea

s for Sm
all M

athem
atician

s

Elementary school mathematics doesn’t have  
 to be just worksheets and multiplication tables. 

Sometimes children need to see the big picture. Even 
young students are capable of understanding relative-
ly advanced concepts, from geometry to equations, 
when they are properly presented through engaging 
inquiry.

Big Ideas for Small Mathematicians is an ideal 
resource for elementary school mathematics enrich-
ment programs, regular classroom instruction, or a 
home enrichment or home school program. Over 20 
intriguing projects cover a wide range of math con-
tent and skills. 

Projects include

	Straw StructuresÂ€ Students con-
struct three-dimensional models 
to develop visualization skills.

$19.95 (CAN $24.95)

Suncatcher ReflectionsÂ€Children build kaleido-
scopes and explore the geometric patterns created 
by angular reflections.

Balloons and Dice GameÂ€Kids learn about prob-
ability through a hands-on exercise.

Discovering PiÂ€Students explore the relationship 
between the circumference and diameter of a circle, 
and find pi in the process.

Each unit includes a brief overview, objectives, 
materials, vocabulary, and step-by-step procedures. 
Reproducible student activity sheets are included for 
instruction and assessment.

Ann Kajander is the founder of the Kindermath 

Enrichment Project and an adjunct professor in the 

Mathematics Department of Lakehead University.

Pythagoras, tessellations, and tetrahedral 
fractals . . . with young children? No problem!

Educational Resource� Grades 1–5

Big Ideas 
for Small

Mathematicians

Big Ideas 
for Small

Mathematicians



Ann Kajander

BIG IDEAS 
 for Small

Mathematicians
Kids Discovering the Beauty of Math with 22 Ready-to-Go Activities

Chicago



The Library of Congress has cataloged the earlier edition as follows: 
Kajander, Ann

Big ideas for small mathematicians : kids discovering the beauty of math with
22 ready-to-go acvitities / Ann Kajander.

p. cm.
Includes bibliographical references and index.

ISBN 1-56976-155-8
1. Mathematics—Study and teaching (Elementary) 2. Mathematics—Study and teach-
ing—Activity programs. 1. Title.
QA135.6.K35 2003
372.7—dc21 2002010805

All rights reserved. The purchase of this book entitles the individual teacher to repro-
duce the forms for use in the classroom. The reproduction of any part for an entire
school or school system or for commercial use is strictly prohibited. No form of this
work may be reproduced, transmitted, or recorded without written permission from the
publisher.

Cover design: Monica Baziuk
Interior design: Dan Miedaner

© 2007 by Ann Kajander
All rights reserved
Published by Zephyr Press
An imprint of Chicago Review Press, Incorporated
814 North Franklin Street
Chicago, Illinois 60610
ISBN-10: 1-56976-213-9
ISBN-13: 978-1-56976-213-4
Printed in the United States of America
5 4 3 2 1



iii

Introduction

For Arthur, Robin, and Maria

Acknowledgments

Barb Kutcher had the original inspiration for the Kindermath Project, an enrichment project in elementary
mathematics, for which these activities were designed. Since its inception, the project has been supported

and encouraged by many members of the Canadian Mathematics Education Study Group. Ideas from members of
this group—including George Kondor, Ralph Mason, Elaine Simmt, Brent Davis, Vicki Zack, and Bernard
Hodgson—have inspired activities in this book.

Many elementary teachers as well as my students at Lakehead University have helped field test the ideas,
particularly Colleen Modeland, Nicole Walter Rowan, Leila Desforges, Teena Bernardo, Joan Quequebush, and
Suzanne Huot. I am also grateful for extensive help from Peter Taylor, translation help from Lori Ruberto, and
help in disk preparation from Colleen Modeland.

My husband, Wally Drohan, was very supportive with his photography assistance, as well as sharing his office
space for Kindermath classes. Colleagues who offered particular personal support have been Peter Taylor, Douglas
McDougall, and George Gadanidis.



iv

Introduction

Contents

Introduction ........................................................ vi

1. Pattern Shapes ..............................................1
Children are challenged to create an
interesting geometric pattern using
geometric shapes.

2. Squares and Odd Numbers............................6
Children use a geometric pattern to
investigate the concept of squares and
the sum of odd numbers.

3. Cubes in a Room .........................................13
Children construct shapes, hidden from view,
and try to describe their shapes to their
partners using only words, so that their
partners can build the shapes without seeing
the originals.

4. Straw Structures ..........................................18
Children work together to create large
structures out of straws and pipe cleaners
to enhance their three-dimensional
visualization skills.

5. Soma Cubes .................................................24
Children discover all possible irregular
arrangements of four or fewer cubes and
use them to build a soma cube.

6. Divisibility Circle .........................................30
Children create a notched cardboard circle
and attach a long piece of yarn, which they
use to investigate numeric divisibility and
number patterns.

7. Discovering Pi ..............................................35
Children measure large circle circumferences
and diameters and look for a relationship
between them.

8. Tessellations ................................................42
Children investigate Escher drawings and
work on creating their own tessellations.

9. Geometric Memory Game ........................... 47
Children create geometric patterns on
circular templates and play Memory
with them.

10. The Three Bears...........................................52
Children investigate place value to 100
using packages, boxes, and cases of
imaginary porridge.

11. Party Fractions ............................................59
Children create pizza or cake pieces from
circles and use them to solve fraction puzzles
while playing various games with the pieces.



v

Introduction

12. Suncatcher Reflections ................................65
Children examine the mathematics behind
kaleidoscopes by investigating with mirrors
and creating their own kaleidoscope design
in a suncatcher.

13. Kaleidoscope ...............................................73
Children create their own kaleidoscopes
from simple materials.

14. Crawling around the Moebius Strip ........... 79
Children attempt to create a Moebius strip
in answer to the challenge of drawing a line
on both sides of a strip without lifting their
pencils.

15. What Color? ................................................84
Children investigate a net (or template) of a
paper house with walls and roof in certain
colors. They then investigate what other
nets would yield the same house and what
color would be where.

16. Balloons and Dice Game .............................90
Children predict with a game the most likely
outcome of the sum of two dice.

17. Balances and Equations ..............................95
Children model linear equations by building
and playing with a balance they create.

18. Proof with Pythagoras and Fermat............102
Children experiment with concrete
constructions based on the ideas
(Pythagorean theorem and Fermat’s last
theorem) of two great mathematicians and
think about the concept of mathematical proof.

19. Streamers Problem ....................................112
Children investigate instances of the
classic nodes, or handshakes, problem
and look for patterns leading to a solution
using streamers.

20. 3-D Tic Tac Toe..........................................120
Children practice three-dimensional
visualization and reasoning, as well as
problem solving in three-dimensional space.

21. Fractals and Infinity ..................................124
After investigating the idea of “things that
keep on going,” children construct a fractal
of their own and investigate the notion of a
limit.

22. Tetrahedral Fractal ....................................131
Children create a three-dimensional fractal
by working together to create the
components—tetrahedrons that repeat on a
larger and larger scale.

Glossary ...........................................................138

Index ................................................................145



vi

Introduction

Introduction

Many children and adults believe mathematics to be
a rather boring collection of difficult facts. Noth-

ing is further from the truth! Learning mathematical facts
in isolation is a bit like learning to spell but never reading
or writing a story, or learning all
about the technical skills of vi-
sual art but never creating a
picture or examining the great
works of other artists. Of course
it would be boring to learn a
subject this way.

It is just as possible to play
with mathematical ideas before
mastering the technical skills as
it is to fingerpaint before learning about perspective and
vanishing points. And creation is fun, even in math.

Practicing mathematicians find math to be exciting
and fascinating. They love to play around and explore. In
this book I have tried to collect some of the important
ideas in mathematics that can be explored in a hands-on
way. Some topics are a usual part of elementary school
mathematics programs, such as activity 8 on tessellations
or activity 10 on the number system, but I approach them
in a new way. Some are topics not usually discussed with
children, such as topology in activity 14. Nearly all of the
topics are effective with older students as well. I have used

many of the topics successfully with secondary-level stu-
dents, and I often have to chase them out of the classroom
when the bell rings!

These activities will work in a variety of situations:

• elementary classroom small-group
problem-solving and exploration ses-
sions

• math centers in the classroom

• math fairs

• special parent-and-child math days or
evening sessions

• parent-and-child math exploration at
home

• examples for mathematics teacher
education

I know some elementary teachers who devote a pe-
riod a week to mathematics exploration, and many parents
are in search of engaging activities they can do with their
children to stimulate their creativity and love of math-
ematics. The adult doesn’t need a particular math
background—all required background is supplied in the
Mathematical Idea section of each activity.

Although the activity sheets can be used as is with
children whose reading ability is sufficient, I prefer to de-
liver the instructions orally to children working in small

Learning mathematical
facts in isolation is a bit like
learning to spell but never
reading or writing a story.
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groups. In this way, I can better control the pacing. One
would hope that the next part of an activity would flow
naturally from the students’ questions. I find it is the in-
teraction of the students with each other and with the
adult that makes these activities richer. Often if children
are led orally into answering questions and discussing the
ideas while, say, they are making a tessellation, they don’t
even realize they are “talking math.” Several of the activi-
ties can also be done in art class (such as activities 1, 6, 8,
9, 12, 21, and 22) or science class (activities 13 and 17),
freeing up more time for investigation in math class.

The activities are roughly ordered from activities that
all children can do to activities slightly better suited for
children with a little more arithmetical skill, such as un-
derstanding the idea of multiplication. Within this
ordering, activities are generally grouped by topic. The
charts on pages ix–xi (Content Areas in Each Activity,
Process Skills Used in Each Activity, and Prerequisite
Knowledge and Skills for Particular Activities) detail the
basic skills and topics of each activity as well as giving
you an idea of what the children should know before em-
barking on a particular activity. That is not to say children
cannot tackle a harder idea. I don’t think it’s always neces-
sary to finish each activity or answer everything. Rather,
the activities are meant to convey the idea that mathemat-
ics can be interesting, open-ended, uncertain, surprising,
and highly creative.

Parents and teachers often think these ideas are only
for bright kids. Given that the gifted are often underachiev-
ing, this may be a good use for the activities, but I have
had surprising success using these activities with children
branded as less skilled in mathematics. I remember a
mother who came to me at wits’ end with her fifth-grade
daughter who hated mathematics and had poor technical

skills. When I spoke with her teacher, she told me the girl
was “failing mathematics” and wondered “why the mother
would send her to an enrichment program” (referring to
the Kindermath program). This young lady managed to
surprise everyone in the new environment. She discov-
ered the trick to winning 3-D Tic Tac Toe (activity 20) in
no time, and came up with a solution to the Streamers
Problem (activity 19) on her own, which she shared with
her class and her teacher. This experience changed her
attitude toward mathematics and herself, and she gave
learning the missing technical skills in school a much
stronger effort. Three years later, I am told, she is now an
A student in mathematics!

These activities are meant for exploration, enjoyment,
and to stimulate curiosity. They can involve whole fami-
lies in the wonder of mathematics. Enjoy the journey!

Many of the activities lend themselves to classrooms set up in groups.
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How to Use This Book
Each activity in this book is divided into informative and
instructional sections to make it easy to understand the
ideas behind the activity as well as guide the students
through the activity successfully.

• The Big Idea: This first section of each activity sum-
marizes the underlying mathematical concept, so
you can get the big picture before diving into the
details.

• Content Areas in This Activity: This section lists
the main mathematical content areas the activity
involves. This information is also summed up for
all activities in the chart on pages ix–x.

• Process Skills Used in This Activity: This section
lists the main thinking and learning skills the stu-
dents will use throughout the activity. This
information is summed up for all activities in the
chart on page xi.

• Prerequisite Knowledge and Skills: This section
lists whether the children will need particular con-
tent knowledge before embarking on the activity.
Most of the activities will be enjoyable for children
on some level regardless of their previous knowl-
edge and skills, but having these technical skills
will make it easier for them to understand the math
behind the activity. The chart on page xi lists this
information for the activities as a whole.

• Age Appropriateness: Most of the activities in this
book are suitable for all ages, with varying degrees
of adult assistance. In this section, you will find
suggestions for adapting various aspects of the ac-
tivity to suit different age groups. For example,

younger children can often enjoy an activity with-
out having to understand all of the mathematics
behind it, but each activity is also set up to allow
for further exploration of concepts as well as the
introduction of terminology for older and more
advanced students.

• The Mathematical Idea: This section describes the
mathematical idea at the heart of the activity, to
provide background for you and to assist you in
following and facilitating the children’s thinking.
Often children have a correct but incomplete intui-
tive sense of a problem, and it is helpful for the adult
to have a sense of the possible approaches to use.

• Helpful Terms: This box includes a list of terms
relevant to the activity and their definitions. The
purpose of this box is to enable you to review the
basic terminology and concepts as well as to give
you wording to use when explaining the ideas to
the children. You will also find a complete glossary
at the end of the book (page 138).

• Making It Work: This is the nuts-and-bolts section
of the activity. Here you will find objectives, a list
of materials you will need, preparation instructions,
the activity procedure, suggestions for making the
most of the activity and for helping the children
through trouble spots, assessment ideas for deter-
mining if the activity was successful, and an
extension activity or two for those kids who want
to explore more.

• Activity Sheet: The activity sheet lists each step of
the activity, as in the procedures section of Making
It Work, but this sheet is directed to the children,
with illustrations and hints to help them work
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through the activity successfully. For children able
to read well and follow instructions, a photocopy
of this activity sheet will assist you in taking them
through each step, although this sheet is not meant
to replace your active involvement and guidance.
You may decide not to use the activity sheet for
younger kids who won’t be able to read it well, or if
you prefer to take the class through the activity
orally, without the help of written instructions.

The activities are meant to convey
the idea that mathematics can be
interesting, open-ended, uncertain,
surprising, and highly creative.

Content Areas in Each Activity
X = major idea in activity        * = idea included in activity        O = could optionally be included

Mathematical Topic Activity Number

Numeracy

addition, single digit

subtraction, single digit

addition, double digit

place value to 100

multiplication, single digit

division as partitioning

division, single-digit divisor

division with calculator

equivalent fractions

square numbers

prime numbers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

O * * * * *

*

O * * * *

X

O O * O * O

*

O O O O

O O

X

O *

*

(continued on next page)
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Content Areas in Each Activity (continued)
X = major idea in activity        * = idea included in activity        O = could optionally be included

Mathematical Topic Activity Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

* *

* O *

X * O

O * * O

*

X * * * * * * * O * *

* * O

* X * X * *

* * *

* X X * X X * *

X

O

* O * * * O O

* *

X X O

X

* *

X

*

Measurement

areas of squares

angles

circles

volumes

equivalent measures

Patterning

geometric

numeric

pattern rules

iterative patterns

Geometry and Spatial Sense

3-D visualization

nets

sketching in 3-D

terminology (geometric)

intersections in space

transformational geometry

geometric recall

fractal geometry

Probability

sample space

combinations
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

P H H

H

P P P P

P P

P P

H H H H P H

H H H

H

P

P

H

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

* * * * * * * * * * * O

* O * * * O * X * O O

X * * * * * * * * * * O O

O O O X O O

O O X * O

* * * * * * * * O

* * * * * * * * *

X = major idea in activity        * = idea included in activity        O = could optionally be included

Process Skills Activity Number

reasoning

hypothesizing

problem solving

concept of proof

communication

creativity

aesthetics of mathematics

Prerequisite Knowledge and Skills for Particular Activities
P = prerequisite        H = helpful

Prerequisites Activity Number

previous activity

understanding of odd numbers

single-digit addition

double-digit addition

single-digit subtraction

single-digit multiplication (by hand or calculator)

single-digit division (by hand or calculator)

place value to 10

fraction notation and meaning

idea of area of squares

nets as surface area

Process Skills Used in Each Activity
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Pattern Shapes

The BIG Idea
Geometric patterns are the very essence of discovering
new mathematical relationships.

Content Areas in This Activity
• Geometric patterning
• Pattern rules

Process Skills Used in This Activity
• Communication (optional)
• Creativity
• Aesthetics of mathematics

Prerequisite Knowledge and Skills
None

Age Appropriateness
This simple activity is appropriate for all ages.

The Mathematical Idea
Patterns are a central idea in mathematics. Almost any-
thing that has a pattern contains some mathematics, and
most mathematical ideas contain some rule or pattern.
Recognizing increasingly subtle patterns is an important
mathematical skill. This activity will introduce children
to the concept of patterns, with an emphasis on enjoying
their visual appeal. Showing examples of aesthetically
pleasing patterns will enhance the activity and encourage
children to be creative. Many quilts, for example, show
remarkable patterns.

The central notion of a pattern is that it is predictable,
once we see what is repeated. The pattern may change as
we progress, but in a predictable way. Children should be
able to identify what is repeated in their patterns, and what
would come next. Patterns can be linear, nonlinear, or
rotational. (See the box on page 2 for definitions of these
terms.)

Wherever there is a pattern, there will be some math.
Even if they can’t yet name the patterns mathematically,
children can still enjoy inventing them. Have fun creating!

PATTERN SHAPES
Activity

1
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Objectives
• Children will create geometric patterns.

• Children will connect the skills of pattern recogni-
tion, pattern creation, and spatial reasoning.

• The activity will encourage creativity and an aes-
thetic sense of mathematics.

Materials

✔ a few 8 1/2" x 11" pieces of light cardboard or con-
struction paper in several colors for each child

✔ scissors for each child

✔ glue stick for each child

✔ 11" x 17" piece of background paper for each child

✔ photographs of quilts and other geometric designs

✔ colored pens or pastels (unless using multicolored
cardboard or paper)

✔ photocopy of the Pattern Shapes Activity Sheet (on
page 5) for each child

Pattern Shapes: Making It WorkHELPFUL TERMS
Patterns: Mathematical objects, such as numbers

or shapes, that are continued in a predictable way
are called patterns.

Geometric patterns: Patterns created using shapes
are called geometric patterns.

Linear patterns: Linear patterns change by the same
amount each time: for example, 2, 4, 6, 8, . . .
(changing by 2) or red, blue, red, blue.

Nonlinear patterns: Nonlinear patterns change by
a different amount each time: for example, 2, 4,
7, 11, 16, . . . (changing by 2, then 3, then 4,
then 5, and so on) or red, blue, red, blue, blue,
red, blue, blue, blue, . . .

Rotational patterns: Rotational patterns are
patterns created by rotating a shape or image.
For example, a minute hand traces a rotational
pattern around a clock face.

An important
aspect of a
pattern is that
we can predict
what would
come next.

☞T ry cutting the shapes out of heavy
wrapping paper or textured paper

as well as cardboard. Alternatively, you
could purchase pattern blocks, as
shown in the photo on page 4.



3

Pattern Shapes

Preparation

• You could speed up the process by creating shapes
ahead of time. Copy and cut out the shapes on the
activity sheet (on page 5). You can enlarge the
shapes as desired. Trace them onto light cardboard
or construction paper, cut them out, and color them
(or use different colors of construction paper).

Precut shapes in a variety of colors may help in-
spire children to be creative. You could even put
together a few patterns as examples for the children.

Procedure
1. Show children pictures of geometric patterns, such

as quilts, to stimulate discussion and understand-
ing of what a pattern is. Ask children what they
think a pattern is and what it is not. Guide the dis-
cussion to include the idea that a pattern involves
repetition.

2. Hand out the activity sheet (page 5), the back-
ground paper, glue sticks, cardboard or construction
paper (and heavy wrapping paper or textured pa-
per, if desired), and colored pens or pastels (unless
using multicolored paper).

If you precut the shapes, just hand out the shapes
themselves. Give each child several of each shape
so that everyone has plenty of shapes to choose from
and can repeat shapes to form a pattern as desired.

3. Tell the children that they are to create any pattern
they wish with the shapes. Encourage them to make
a pattern, not just a pretty picture or set of random

Most children enjoy creating their own patterns from
precut shapes.

• If you don’t cut out the shapes ahead of time, make
enough copies of the activity sheet for each child
to have one.

• Enhance child creativity and comprehension by
gathering photographs of quilts and other geomet-
ric designs.

☞
The book Mathematical Quilts: No Sewing Required, by

Diana Venters and Elaine Krajenke Ellison (Emeryville,
Calif: Curriculum Press, 1999), is a source of many
wonderful ideas. The mathematics in each design allows
for application at the secondary and even post-secondary
levels. The Long Island Children’s Museum website
(www.licm.com) also has a hands-on quiltmaking feature.
After entering the site, click on their hands-on activities
and scroll down to the “QuiltMaker” link.
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shapes. They do not need to use all of the shapes.
For example, a young child could simply make a
checkerboard pattern with two colors of squares.

Assessment

Children are successful with this activity if they have cre-
ated a clear pattern of their own.

Extension Activities
Children may enjoy making patterns on three-
dimensional objects such as cardboard boxes.
Another interesting challenge is to describe
patterns using only words, so that someone
else can create the same pattern. Children can
try this in pairs, with another child whose
pattern they haven’t seen. Encourage simple
explanations, stressing the idea of the repeated
elements.

The pattern on the left contains both linear and
rotational elements.

4. Choose questions to prompt children appropriately,
depending on the situation. For example:

• “How about a star?”

• “In what other ways could you arrange the
pieces?”

• “Can you make this pattern repeat?”

• “What would it look like if you made another
ring of shapes?”

• “Can you make your own quilt pattern?”

5. After they design patterns they like, children glue
them onto their big piece of background paper.

Suggestions

• Doing this activity in a group will encourage the
children to share ideas.

• Encourage children to be creative. Remember, math
can be visual, creative, and just plain fun! More fun with pattern shapes.



5

Pattern Shapes

You can have a lot of fun making a pattern with even
basic shapes, like the square, triangles, and parallelo-
gram on the right.

1. Start by cutting out the pieces on the right (unless
your teacher gives you other shapes to use).

2. Next, use these cut-out pieces to trace the shapes
onto cardboard or construction paper. Trace a lot
of them in various colors and cut them out. (If you
trace onto plain cardboard or paper, use colored
pens or pastels to color in the shapes.) You can cut
out each shape in a single color (such as blue for
your squares, red for one kind of triangle, green for
the other, and so forth) or use several colors for
each shape.

3. Now play with your pieces to make a design you
like. Try to repeat the same pattern in your design.

4. When you have a pattern design you like, glue the
pieces down on a big sheet of paper.

1

2

3

4

Pattern Shapes Activity Sheet

Cut out these pattern pieces and trace them onto
cardboard, construction paper, wrapping paper, or
textured paper.

1

Big Ideas for Small Mathematicians, 2007 © Zephyr Press 
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SQUARES AND
ODD NUMBERS

Activity

2
The BIG Idea
There is often a geometric illustration of a complicated
idea that makes the idea easier to see.

Content Areas in This Activity
• Square numbers (optional)
• Addition, single digit (optional)
• Multiplication, single digit (optional)
• Areas of squares
• Geometric patterning
• Numeric patterning
• Pattern rules

Process Skills Used in This Activity
• Reasoning
• Hypothesizing
• Concept of proof (optional)
• Communication (optional)
• Creativity
• Aesthetics of mathematics

Prerequisite Knowledge and Skills
• Activity 1
• Understanding of odd numbers (helpful)
• Multiplication, single digit (helpful)

Age Appropriateness
Children as young as seven can appreciate this activity if
they do it slowly. For very young children, stick to a geo-
metric understanding of sizes of squares, rather than the
more numeric concept of square numbers.

Mathematical Idea
Square numbers are easy to illustrate geometrically. They
are simply the numbers that make actual square shapes.
We can build a 2 x 2 square shape to illustrate the square
number 4, a 3 x 3 shape to illustrate 9, and so forth. The
first part of this activity involves using small cubes or tiles
to build squares of various dimensions. This will illus-
trate the concept of a square number in a visual way.

The first square number: 1 x 1 = 1

The second square number: 2 x 2 = 4

The third square number: 3 x 3 = 9

The fourth square number: 4 x 4 = 16

The fifth square number: 5 x 5 = 25
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The second part of the activity explores an interesting
idea (called a theorem) about odd numbers and square
numbers: If you add a list of odd numbers starting at 1,
you always get a square number! For example, 1 + 3 + 5 =
9, so the sum of the first three odd numbers is 9. Here’s
another one: 1 + 3 + 5 + 7 + 9 = 25 so the sum of the first
five odd numbers is 25. Geometrically (that is, by using
actual shapes), we can build each new square number by
adding another odd number.

We add the next odd number to our square to get the next
square number. This square illustrates 1 + 3 + 5 + 7 + 9 = 25
(or a 5 x 5 square).

So we get the fifth square number (25) by adding the
nine new cubes (or tiles) to the right of and below the 4 x
4 square—and 9 is the fifth odd number! We have a com-
plicated-sounding mathematical theorem—the fact that
the sum of the first n odd numbers is always n x n or n
squared (n2)—illustrated in something as simple as an
array of squares.

HELPFUL TERMS

Area: Area is the number of 1 x 1 squares that it takes
to cover a surface. For example, the area of a 2-
inch by 3-inch rectangle is 6 square inches (that
is, 2 x 3 = 6); in other words, it takes six 1-inch by
1-inch squares to cover it.

Even and odd numbers: Even numbers are divisible
by 2, and odd numbers are not. Two people can share
an even number of objects, but an odd number of
objects will have one object left over.

Proof: A mathematical proof is a sequence of logical
deductions to establish the truth of something new
from something we know. If the proof applies to
an idea that includes an infinite number of values,
then examples are not enough to prove something,
which is the case in this activity because odd
numbers go on infinitely.

Square numbers: Square numbers represent the areas
of squares that have sides of whole (not fractional)
numbers. For example, 25 is a square number
because it is the area of a 5 x 5 square. Simply,
square numbers are the number of tiles (equal in
size) needed to build a square.

Sum: Sum is a name for the number you get when you
add two or more numbers. For example, the sum
of 2 + 5 + 1 is equal to 8.

Theorem: Theorem is a name for a mathematical idea
that can be proven always to be true.
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Objectives
• Children will construct square numbers geometrically.

• Children will experience a first taste of a geometric
proof by exploring the notion that if we keep adding
the next odd number, we always get a square number.

Materials
✔ at least 25 small cubes, such as sugar cubes or

centicubes, for each child (a variety of colors is
ideal), or the same number of square tiles per child

✔ photocopy of the Squares and Odd Numbers Ac-
tivity Sheet (on page 11) for each child

Preparation

None

Procedure 1: Building a Square

Older children who understand the concept of square
numbers may want to skip to Procedure 2, opposite. You
can focus on numerically defining square numbers through
this first part of the activity, or you can simply define square
numbers as the number of cubes (or tiles) needed to build
a square, without explicitly listing all of the square num-
bers or getting into multiplication.

1. Hand out the activity sheet and cubes or tiles to
each child. Have the children start with one cube
(or tile). (If necessary, discuss the concept of 1 being
a square number because the outline of one tile or
one cube looks square; in other words, 1 x 1 = 1.)

2. Children should write down how many cubes it
took to build the 1 x 1 square on the Square Num-
bers Chart (in the 1 x 1 row) on page 11.

3. Next, have the children construct a 2 x 2 square
and record on the chart the number of cubes or
tiles they used.

4. Repeat the process for a 3 x 3, 4 x 4, then 5 x 5 square.

5. Explain to the children that the number of cubes
they use for each square is a square number because
they can build a square out of that number of cubes.

Squares and Odd Numbers: Making It Work

Building the square numbers.
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Procedure 2: Adding Odd Numbers to Squares
This next part of the activity involves adding odd numbers
to squares. You may need to review the concept of odd and
even numbers with younger children before continuing.

1. Have children start with one cube or tile. Ask how
many pieces they need to add to create a 2 x 2
square, then have them build it.

2. Ask how many pieces they need to add to the 2 x 2
square to create a 3 x 3 square, then have them
build it.

3. At this point, ask the children if they notice any-
thing special about the numbers they are adding to
each square to make the next highest size. (They
should recognize 3 and 5 as odd numbers.)

4. Next ask the children how many cubes are in their
current squares (9). They started with 1 cube, added
3, then added 5 for a total of 9 cubes: 1 + 3 + 5 = 9.
Do they notice a pattern here? Guide the discus-
sion as necessary to the realization that adding
successive odd numbers together, starting with 1,
will always create a square number. (Older kids can
take this further to the realization that 9 is the third
square number and that they added three odd num-
bers together to get 9.)

5. Have the children continue adding odd numbers
to their squares to create the next largest square.
Ask them if they think the idea will always be true
no matter how big the square. Could there ever be
an example where it wouldn’t work? What would
it take to be sure it will always happen? You could
introduce the terms theorem and proof this point.

6. Finally, ask them to show how they can separate
their largest square into odd numbers again.

☞Historically, mathematicians required a formal
algebraic argument to constitute a mathematical

proof. More recently, with the increased use of
computers, some mathematicians feel that geometric
arguments, such as the one in this activity, although
not considered a formal proof, should be given the
status of a dynamic proof ; that is, an argument based
on visual, movable, geometric elements of a concrete
nature to illustrate an idea in a convincing way. So
sometimes even mathematicians aren’t sure what a
“good enough” argument is!

The fifth square number is the sum of the
first five odd numbers.
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Suggestions

• Building the squares with different colors—that is,
using different colored cubes or tiles each time they
add the next odd number—may make the idea
clearer.

• Instead of handing out activity sheets and taking
children through the above steps, you could pose
the question: “Can you find a way to show that
when you add up a list of odd numbers (starting
with 1), you will always get a square number?” Al-
lowing them to play with the idea is better than
having them work through the directed activity, but
of course this will work better with some children
than with others.

Assessment

Determine understanding by asking the children to ex-
plain the ideas of squares and square numbers, as well as
the ideas of proof and theorem, to the degree that you’ve
discussed them.

Extension Activity
Have the children use other shapes to show
that the idea works no matter what shapes
you use to illustrate it, as long as you are using
the same shape repeatedly (that is, you can’t
use triangles to build squares, for example).
They could start with a triangle, then add three
more triangles to make the next biggest
triangle, as shown in the figure below.

If you start with one triangle, the second triangular
shape is made from four triangles.

To get the next shape, they add the next odd
number, or five triangles, to the bottom, giving
the same sum as before—nine, or the third
square number. Rectangles, diamonds, and
other parallelograms will work too!
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Squares and Odd Numbers
Activity Sheet

Discover a neat relationship between odd numbers and
square numbers.

First let’s learn about square numbers.

Part One
1. Start with one cube (or square tile). This will rep-

resent a 1 x 1 square. Write how many cubes (or
tiles) are in this square in the Square Numbers chart
(across from 1 x 1).

2. Next add pieces to build a 2 x 2 square. How many
cubes (or tiles) are in this square? Write your an-
swer across from 2 x 2 in the Square Numbers Chart.

3. Build a 3 x 3 square by adding to the 2 x 2 square
and write the number of cubes (or tiles) in this
square across from 3 x 3 in the Square Numbers
Chart.

4. Add more pieces to the 3 x 3 square to build a 4 x 4
square and write the number of cubes (or tiles) in
this square across from 4 x 4 in the Square Num-
bers Chart.

Square Numbers Chart
A square of requires this many cubes or tiles
this size . . . to build it (a square number):

1 x 1 ________

2 x 2 ________

3 x 3 ________

4 x 4 ________

5 x 5 ________

5. Add on again to build a 5 x 5 square and write the
number of cubes (or tiles) in this square across from
5 x 5 in the Square Numbers Chart.

The new numbers in your chart (the number of
cubes or tiles in each square) are called square num-
bers because we can build squares with them.

2a

1

2

3

4

5
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Part Two
1. Start with one cube (or tile) and build a 2 x 2 square.

How many did you add to the one cube (or tile) to
get a 2 x 2 square? ________

2. Now add cubes (or tiles) to your 2 x 2 square to
build a 3 x 3 square. How many cubes (or tiles) did
you add to get a 3 x 3 square? ________ Does this
number have anything in common with the num-
ber you wrote in step 1?

3. How many cubes (or tiles) are in your current 3 x 3
square? __________

4. Try adding the next odd number (7) to your square.
How many total cubes (or tiles) do you have now?
__________

5. Keep adding odd numbers until you run out of
cubes or tiles! Do you think you can keep getting
bigger squares by adding an odd number?

6. Using your biggest square, show how you can sepa-
rate it into odd numbers again.

Squares and Odd Numbers
Activity Sheet

1

2

3

4

Add new cubes (or tiles) to the right of
and below the 2 x 2 square to create a
3 x 3 square.

5

6

2b
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Cubes in a Room

CUBES IN A ROOM
Activity

3

The BIG Idea
Verbally describing three-dimensional shapes requires
careful communication.

Content Areas in This Activity
• Three-dimensional visualization
• Geometric terminology

Process Skills Used in This Activity
• Communication
• Creativity

Prerequisite Knowledge and Skills
None

Age Appropriateness
Children under the age of seven may have difficulty with
this activity on their own, but most will be able to handle
the activity with a grown-up such as a parent or older buddy
observing and helping. Eight- to ten-year-olds should be
able to work in pairs without a grown-up. In general, more
intervention is needed with younger children to remind
them that they must explain, not show or draw, the shape,
and to help them select appropriate language.

Mathematical Idea
Communication is an important aspect of mathematical
development. This activity encourages verbal communi-
cation, problem solving, and spatial reasoning. Children
may develop an understanding of terminology such as face,
width, length, height, square, level, and so forth as a natural
outcome of this activity. They may also develop an appre-
ciation of the need for precise mathematical language.

The activity involves creating a shape out of 27 or fewer
cubes, a shape that must fit into the “room”—an open
box that won’t allow the shape to be larger than three cubes
in any direction. After one child creates a shape, he or she
must describe that
shape using only
words to a partner,
who will try to re-
construct the shape
based on the other
child’s words alone,
without seeing the
shape.

The child on the left is listening, asking, and building.
The child on the right is describing.
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Cubes in a Room: Making It WorkHELPFUL TERMS

Objectives

• Children will improve their verbal communication
skills in mathematics, possibly learning new math-
ematics terminology.

• Children will strengthen their ability to visualize
in three dimensions.

• Children will build teamwork skills.

Materials

✔ 27 small cubes, such as sugar cubes or centicubes,
for each child

✔ sheet of paper for each pair (two boxes can be made
from an 8 1/2" x 11" sheet)

✔ scissors

✔ transparent tape

✔ file folder or book (to hide shapes-in-progress from
partner’s view) for each pair

4 photocopy of Cubes in a Room Activity Sheet (page
17) for each child

Preparation
• Prepare the boxes ahead of time by first enlarging

the template on page 15 to the size you need and
making a photocopy for each child before cutting
out the templates. This open-front paper box should
be barely larger than the cube made with all 27 small
cubes. This is the “room” for each structure.

If your class will use centicubes, enlarge so that
each square is about 1 1/4" x 1 1/4" (3.125 cm x 3.125
cm), making it slightly larger than the maximum

Cube: A three-dimensional object with six square
faces is a cube. All the angles between edges are
90 degrees, or right angles.

Edge: An edge is the straight line that bounds a
closed shape. For flat shapes, we usually call
these sides, but in three dimensions we call them
edges. For example, a cube has 12 edges—think
of it as the number of toothpicks it would take
to construct it.

Face: The flat outside surfaces of a three-
dimensional solid are faces. For example, a cube
has six faces.

Height: The vertical measure of an object, measured
from the base to the highest point, is its height.

Length: Length is the measure of one dimension of
a geometric object, such as one side of a
rectangle.

Level: Level means flat or parallel to the floor, as in
a balanced, or equally weighted, scale.

Square: A polygon (that is, a flat shape) with four
equal sides is called a square.

Vertices: The point where two or more edges meet
on a two- or three-dimensional shape is a vertex.
For example, a triangle has three vertices, and a
cube has eight vertices.

Width: The distance across a shape is its width.
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2. Have the children practice building shapes together
at first to be sure the rules are clear: Shapes can be
no bigger than three-cubes by three-cubes by three-
cubes, and cubes must touch on edges or full faces.
After completing a shape, each child should slide it
into the box to make sure it fits.

size for the shape (which can’t exceed 1 1/5", or
3 cm, high or wide). If your class will use sugar cubes,
measure a sugar cube, multiply that number by
three, and add about 1/4" (0.5 cm) to determine how
big each square in the template should be.

• After you have photocopies of the template at the
size you need, cut each one out and tape it into a
box that will be open in the front and on the bot-
tom. Double-check that the box is the right size for
no larger than a three-cube by three-cube by three-
cube structure.

Layout for the paper box in which to put the structure.

top

Procedure

1. Have the children pair up, then explain that one of
them will construct from the cubes a shape that
must fit in the box. (You can tell them that it can’t
be bigger than three cubes in any direction, but of-
ten it is easier to explain by saying, “It must fit in
the box.”)

It is helpful to have
the children practice
building shapes
before they build a
shape to describe to
their partners.

right side

back

left side

Ahelpful way to demonstrate the idea is to
build a cube out of all 27 cubes and then
remove pieces to create a shape. Describing
larger shapes can be too cumbersome and
difficult for young children, so describing how
to create the shape by removing pieces from a
familiar shape may make this activity easier.

Big Ideas for Small Mathematicians, 2007 © Zephyr Press 
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Extension Activities
For older children, remove the size
restriction and allow them to build any
shape they like, using as many cubes as
they wish.

3. After everyone understands the idea of creating the
shape within size limits, have the children decide
which of them will construct the shape first; then
have them put up the divider between them.

4. The child who will build first makes a structure
out of cubes as described above.

5. After finishing the structure, that child should slide
it into the box to make sure it fits.

6. Then that child describes the shape orally so that
the other can build it. Encourage the children to
ask questions of the person who is describing the
shape. Encourage the ones describing the shape to
use correct mathematical terms, and not drawings
or gestures. Discuss these terms as the need arises;
for example, “We call the flat part a face.”

7. After the children are able to duplicate their part-
ners’ shapes, repeat the process, but this time the other
child in the pair creates and describes the shape.

Suggestions
• Children often think the idea is to have the others

not guess their shapes. Emphasize that the idea is
to describe their shapes well enough that the oth-
ers can build it themselves.

• Sometimes with younger children (age eight or
younger) it is helpful to suggest they describe the
bottom layer first and be sure their partners under-
stand before moving up to the second layer.

Assessment

Children can assess their own progress according to the
accuracy of their partner’s construction based on their
instructions.
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1

2

3

4

Cubes in a Room Activity Sheet

Create a shape out of 27 (or fewer) cubes and describe
it in words so that your partner can recreate the same
shape without seeing it.

1. First choose a partner.

2. Next, both of you practice making shapes out of
the 27 cubes. Each shape must be no bigger than
three-cubes by three-cubes by three-cubes; in other
words, it must fit in the box. Also, the cubes must
touch on edges or full faces. Each time you create a
shape, test its size by sliding it into the box. If it
doesn’t fit, re-create your shape so that it does.

3. Decide who will build first. Put up the divider so
that your partner can’t see what you create and cre-
ate a new shape, still using no more than 27 cubes,
following the same rules: The cubes must touch on
edges or full faces, and the shape can’t be larger
than three-cubes by three-cubes by three-cubes—
it must fit in the box.

4. Now describe your shape to your partner, who must
try to build your shape using his or her own cubes.
Use only words, not pictures or drawings. The other
player may ask any questions he or she likes.

Remember, your goal is to describe your shape
as clearly as possible using only words, so your part-
ner can build it. You may find you need to use some
new mathematical terms to make the job easier!

5. After your partner is able to build your shape, switch
so that your partner describes a shape while you
try to build it.

One possible shape. Testing the shape to be
sure it fits in the box.

If you’re having trouble creating
a shape that will fit your box, try
creating a cube first, then pull
pieces out to create your shape.

5

3

Big Ideas for Small Mathematicians, 2007 © Zephyr Press 
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STRAW STRUCTURES
Activity

4
The BIG Idea
Three-dimensional objects are best seen in three dimen-
sions—not two!

Content Areas in This Activity
• Three-dimensional visualization
• Geometric terminology (optional)
• Intersections in space

Process Skills Used in This Activity
Creativity

Prerequisite Knowledge and Skills
None

Age Appropriateness
Six-year-old children really enjoy making shapes. Older
children may want to work on a shape of their own or the
creation of particular assigned polyhedra.

Mathematical Idea
Three-dimensional objects often have faces composed of
many two-dimensional shapes, such as squares, triangles,
and parallelograms. This activity involves building a three-
dimensional structure of any shape or design using straws

and pipe cleaners. Through this exercise, the children can
learn about many interesting properties of shapes. For
example, the diagonals of squares need longer pieces than
the sides when we are building them—an illustration of
the Pythagorean theorem.

This is an activity for children to do together that is
limited only by their creativity (and maybe their height!).
It is simply fun to do in itself, but it is also a great oppor-
tunity to see different geometric shapes. Visualizing
three-dimensional structures and shapes is hard to do on
a two-dimensional page; working in three dimensions
makes it easier to see the shapes.

These fourth graders are working together to make
a structure of cubes.
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HELPFUL TERMS

Angle: The amount of rotation needed to get from one
direction to another is an angle. Often we speak of the
angle between two lines: This is the amount of rotation
needed to get from one line to the other. It is often
measured in degrees (see also degree).

Cube: A three-dimensional object with six square faces is
a cube. All the angles are 90 degrees.

Degree: A unit for measuring rotation, abbreviated as °, is
a degree. A complete rotation is said to be 360 degrees.
This comes from the historical thought that it took
360 days for the Earth to revolve once around the sun.
Two lines at right angles form angles of 1/4 rotation,
which is 90 degrees (that is, 360 divided by 4).

Diagonals: The lines drawn to connect opposite corners
of a quadrilateral (four-sided) figure, or the lines
connecting any vertex to any other nonadjacent ver-
tex of a figure with more than four sides, are called
diagonals.

Edge: An edge is the straight line that bounds a closed
shape. For flat shapes, we usually call these sides, but
in three dimensions we call them edges. For example,
a cube has 12 edges—think of it as the number of
toothpicks it would take to construct it.

Equilateral: A figure with all sides equal (which will make
the angles equal, too) is equilateral. We refer to a
triangle with all three sides equal as an equilateral
triangle. We generally call an equilateral rectangle a
square, so we don’t really need the term equilateral in

that context. For pentagons and shapes with more
sides than that, the term regular is generally used to
imply the sides are equal.

Face: The flat outside surfaces of a three-dimensional
solid are called faces. For example, a cube has six faces.

Height: The vertical measure of an object, measured from
the base to the highest point, is its height.

Hexagon: A shape with six sides is a hexagon. A regular
hexagon is a shape with six equal sides.

Hypotenuse: This term specifically refers to the side of
a right-angled triangle that is opposite the right
angle—it will be the longest side of the triangle.

Length: Length is the measure of one dimension of a
geometric object, such as one side of a rectangle.

Level: Level means flat or parallel to the floor, as in a
balanced, or equally weighted, scale.

Parallelogram: A four-sided shape (quadrilateral) that
has parallel opposite sides is a parallelogram. Opposite
sides are also equal. A rectangle is a special parallel-
ogram in which the angles are 90 degrees.

Pentagon: A flat geometric shape (polygon) with five
sides is a pentagon.

Polygon: A flat (two-dimensional) shape with straight
sides is a polygon. For example, a hexagon is a polygon
with six sides. A regular polygon has all sides equal.

(continued on next page)
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Objectives

• Children will have fun visualizing and creating their
own three-dimensional shapes.

• Children will have the opportunity to learn geo-
metric concepts, if not terminology, such as face,
edge, vertex, and so on.

• Children will need to collaborate to create a shape
together.

Materials

✔ straws (at least one package per group)

✔ pipe cleaners (one for every four straws)

✔ scissors for each small group

✔ glue stick for each small group

✔ ruler for each small group

✔ photocopy of Straw Structures Activity Sheet (on
page 23) for each child or small group

✔ examples of geometric solids, such as a soccer ball
(optional)

Polyhedron: A polyhedron is a three-dimensional shape
with polygons as faces. For example, a cube is a
polyhedron with six square faces. The plural of
polyhedron is polyhedra.

Pythagorean theorem: This theorem describes the
relationship of squares drawn on each of the three sides
of a right-angled triangle: The areas of the two smaller
squares added together will always exactly equal the
square drawn on the longer side (called the
hypotenuse).

Regular and irregular: In polygons, a regular polygon
means one with sides of equal length. So a square is a
regular polygon, but a rectangle is not (unless it is a
square). An irregular polygon is one with sides of
unequal length.

Square: A polygon (that is, a flat shape) with four equal
sides is called a square.

Tetrahedron: A three-dimensional shape (polyhedron)
made with four triangular faces is a tetrahedron.

Three dimensional: A three-dimensional object isn’t flat
but uses up space (volume). For example, a square is
two dimensional but a cube is three dimensional.

Triangle: A three-sided flat (plane) figure (or polygon) is
a triangle.

Vertices: The point where two or more edges meet on a
two- or three-dimensional shape is a vertex. For
example, a triangle has three vertices, and a cube has
eight vertices.

Width: The distance across a shape is its width.

HELPFUL TERMS
Straw Structures: Making It Work

☞Children can use balls of play clay
(around 1/2 inch, or 1 cm) or even
mini-marshmallows instead of pipe
cleaners to form the joins.
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4. As a team, the children continue to join straws to
form three-dimensional shapes. As they build, you
can have conversations about the surfaces, edges
(the straws), and vertices (the pipe cleaner joins)
in the structure to help introduce or reinforce this
terminology, giving students more ways to discuss
their structures.

Preparation
No preparation is necessary other than gathering the
straws, pipe cleaners, and examples of geometric solids
(if you wish), such as a soccer ball or photograph of a
geodesic dome.

Procedure
1. Have the children get into small groups of up to

four children and explain that they will be creating
a structure using straws and pipe cleaners. You can
ask them to build a specific shape of your choosing
or allow them to build a structure of their choice.
There are in fact a limited number of regular poly-
hedra—that is, three-dimensional objects that can
be made out of a single geometric shape on the out-
side faces. Some models of geometric solids may be
useful for inspiration. This is also the time to dis-
cuss terms such as three dimensional versus two
dimensional, particularly noting that their three-di-
mensional structures will contain two-dimensional
shapes. You could go over the various shape possi-
bilities at this point. Be sure to emphasize that the
structure must be a closed shape, meaning that you
could enclose it by gluing paper on all outside faces.

2. Explain to the children the basics of joining the
straws and pipe cleaners: First they should cut the
pipe cleaners into about 6-inch (16-cm) pieces.

3. Next, they bend a pipe cleaner piece in half, then
bend the ends in any direction they like. They
should dab the ends with glue and insert each end
into a straw, connecting two straws. They can also
put glue on the folded end and insert that into a
third straw, if they wish.

These fourth graders are proud of their structure,
which contains many shapes.
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Suggestions

• Children may be surprised to discover that the di-
agonals of rectangular shapes are longer than the
sides. They may not know it yet, but this is a hands-
on experience with the Pythagorean theorem. You
don’t need to introduce this theorem (unless the
kids are ready), but this property may warrant a
rethinking of the design—to use edges cut shorter
than one straw length, for example, so that a single
straw can be used for a diagonal.

• It may also be fun to investigate the creation of large
polyhedra. An adult working alongside the children
might attempt to make a ball shape out of triangles,
for example, and might ask, “Could we also make
a big ball with just squares on the outside?” or
“What other shapes can we use on the outside to
make a big ball?” Props such as a soccer ball or photo-
graph of a geodesic dome might be helpful here!

Extension Activity
Children who have created a particular polyhedron
may want to cover the outside surface area with
pieces of tissue paper or other light paper to create
the effect of a geometric solid. The pieces should
be cut to the size of each exterior facet and glued
to the straws forming the edges. The volume of the
solid would be the space trapped inside by the faces,
and the surface area would be the amount of paper
used.

Assessment

For mathematical benefit, it is important that children do
in fact make a three-dimensional closed shape out of the
materials, not just any construction, such as a stick man.
Comparing the results to existing solid objects may help
children assess their own success.
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Straw Structures
Activity Sheet

Using straws and pipe cleaners, you and your friends
can create some great three-dimensional structures.
These three-dimensional structures can be formed from
many familiar two-dimensional shapes.

1. First, get into small groups and prepare the pipe
cleaners by cutting them into about 6-inch (16-cm)
pieces.

2. To begin connecting straws, bend a pipe cleaner
piece in half, then bend the ends in any direction
you like. Dab the ends with glue and insert each
end in a straw, connecting two straws. (You can also
put glue on the folded end and insert that into a
third straw, if you wish.)

3. Now you’re ready to start building your structure.
If you can’t think of what to make, start with a
simple cube. Then think of what to add to it. Can
you make an archway big enough to walk through?
Or a building, or a bridge? How about a huge cube
made of a lot of smaller cubes? Or a large dome
shape?

4. When you’re done, see how many geometric shapes
you can find in your structure!

4

1

2

3

4
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SOMA CUBES
Activity

5
The BIG Idea
Seven different arrangements of four or fewer cubes fit
together to make a larger cube. Someone invented this
in his head!

Content Areas in This Activity
• Three-dimensional visualization
• Volumes (optional)
• Sketching in three dimensions (optional)
• Geometric terminology

Process Skills Used in This Activity
• Reasoning
• Problem solving

Prerequisite Knowledge and Skills
None

Age Appropriateness
This activity is suitable for all ages. Eight- to ten-year-
olds will be able to find most of the individual pieces
necessary on their own, except possibly the harder two
shown on page 25.

The Mathematical Idea
A Danish writer named Piet Hein, while attending a lec-
ture on quantum physics by Werner Heisenberg, had the
idea that all the irregular shapes made with four or fewer
cubes would themselves form a cube when put together.
After the lecture he confirmed his idea.

This activity explores Hein’s ideas by having children
build the six possible irregular shapes made from four
cubes, plus the one irregular shape made from three cubes.
These shapes are called soma cubes.

The seven soma pieces—irregular shapes made out of four or
fewer cubes.

Only three cubes
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The two most difficult soma pieces

First children will make the two possible regular shapes
out of four cubes (as shown in the illustration on page
27). They do this to aid their understanding of regular
versus irregular. Then children make the one irregular
shape using three cubes (as shown in the photo on page
24) and six different irregular shapes using four cubes.

Building and gluing the soma pieces.

At last! Fitting all seven soma pieces together into
a cube.

The next step in the activity, after building the seven
irregular shapes, is to build a 3 x 3 x 3 cube out of the
seven shapes. So children need 24 cubes in all to make
the six irregular shapes of four cubes, plus three cubes for
the three-cube irregular shape (as shown in the photo-
graph on page 24): 27 cubes in all to construct the seven
shapes. Note that the 3 x 3 x 3 cube they create from these
shapes must indeed contain 27 cubes.

It is tempting to think that two identical pieces that
are positioned differently on the table are not the same
pieces. This activity is good not just for problem solving,
but to work on spatial reasoning in three dimensions (that
is, three-dimensional visualization). Understanding and
using transformational geometry (such as the ideas of re-
flection and rotation) may help children see that two pieces
that look different may be the same. For example, we might
flip one over and see that it is identical to another piece.

The two most difficult
to construct pieces are
shown in the photo at right.
Although these two pieces
look like mirror images of
each other, one, in fact,
cannot be derived by mov-
ing the other around. They
are two different pieces.

The art of soma has fascinated hobbyists for some time,
and many interesting arrangements other than a cube are
possible with the seven pieces. After the children finish
with this activity, they can have fun exploring the many
possible arrangements of the soma pieces.
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HELPFUL TERMS

Cube: A three-dimensional object with six square faces
is a cube. All the angles are 90 degrees.

Face: The flat outside surfaces of a three-dimensional
solid are called faces. For example, a cube has six
faces.

Reflection: Literally, a reflection is what you see when
you look in a mirror, or the “mirror image” of some-
thing. In transformational geometry, reflection
involves flipping an object, often to see if it looks
the same (or the opposite) when flipped.

Regular and irregular: In polygons, a regular poly-
gon means one with sides of equal length. So a
square is a regular polygon, but a rectangle is not
(unless it is a square rectangle). An irregular poly-
gon is one with sides of unequal length.

In this activity, the arrangements of four cubes
that are symmetrical are called regular arrangements.
That is, the cubes are arranged in a square or in a
row that when divided in half form two identical

halves. The arrangements that are not symmetrical
are called irregular arrangements.

Rotation: When you move (or turn) an object in a
circular path around a point called the center, you
are rotating the object. For example, the tip of a
clock hand rotates around the center of the clock;
it follows a rotational pattern. In this activity, chil-
dren can rotate their shapes to see if, after turning,
the shapes resemble other shapes.

Three dimensional: A three-dimensional object isn’t
flat but uses up space (volume). For example, a square
is two dimensional but a cube is three dimensional.

Transformational geometry: The geometry of mov-
ing shapes around. For example, translations (slides),
rotations (turns), and reflections (flips) are move-
ments that are possible in transformational geometry.

Translation: Also known as sliding, translation means
moving an object from one position to another in a
straight-line movement.



27

Soma Cubes

they will need to understand the most important
rule: Cubes must touch at least one other cube on a
full face. Otherwise there would be an infinite num-
ber of arrangements.

3. Guide them as necessary. You may want to build an
example out of cubes or show the illustration be-
low to younger kids.

Objectives

• Children will practice visualizing geometric shapes
in three dimensions.

• Children will practice problem solving with these
three-dimensional geometric shapes.

• Children will learn the difference between regular
and irregular, and may encounter geometric terms
such as rotation, translation, reflection, and face.

Materials

✔ 35 small cubes, such as sugar cubes or centicubes,
for each child

✔ glue for each child or small group

✔ photocopy of the Soma Cubes Activity Sheet (on
page 29) for each child

✔ extra cubes, in case of mistakes (approximately four
for each child)

Preparation

None

Procedure
1. Discuss the difference between an irregular geomet-

ric shape and a regular one, introducing or reviewing
the concept of symmetry as well as terms such as
face and edge.

2. Tell the children they will first build two regular
arrangements of four cubes (as shown in the illus-
tration at right-top). Before they begin, however,

Soma Cubes: Making It Work

Two regular arrangements of four cubes.

4. Next, children will make an irregular shape, the
only irregular shape they can make using three of
the cubes. Build a model or show the illustration
below to help younger children.

5. Children then will make the only six irregular
shapes one can make using four cubes for each
shape. Children need to understand that the six
shapes they are looking for do not include the two
regular shapes they made in step 2.

6. Each time they create an irregular shape from four
cubes, they should glue the cubes together.

The only irregular arrangement
of three cubes.
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☞Encourage children to pick up a newly assembled
piece and play with it. If there is no way of moving
it to make it look like an existing piece, it probably
isn’t. This is a good time to introduce terms like re-
flection (flip), translation (slide), and rotation (turn).

7. After they have found and glued all seven pieces (the
one three-cube arrangement, and the six with four
cubes), it is time to start the real fun—assembling
them into a 3 x 3 x 3 cube. Children may be sur-
prisingly fast at this. (Grown-ups with less patience
can refer to the photographs to follow!)

Suggestions
• This activity is terrific for an adult and child to do

together, especially when making the finished cube.
Children are often very good at spatial reasoning,
and the child may figure it out sooner than the adult,
making it a good confidence builder for the child
(and amusing, or frustrating, for the adult!).

• Finding all six irregular shapes and then building a
cube may take some members of the group quite a
while. To avoid frustration, encourage those who
do find the solutions to share with those who are
having trouble.

Assessment
Children are successful if they can demonstrate under-
standing of irregular and regular shapes by creating all shapes
in this activity, and if they can demonstrate three-dimen-
sional visualization skills by creating the cube. Children
get very excited when they successfully assemble the cube.

Extension Activity
Have children try drawing the seven soma
shapes on isometric dot paper to sharpen
their abilities to visualize in three dimensions
by sketching in three dimensions.

Beginning to assemble the cube
out of the seven soma pieces.

The partially assembled cube. The finished cube made
with the seven soma pieces.

➝ ➝
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Soma Cubes Activity Sheet

Visualizing in three dimensions is an important math
skill. In this activity, you get to build regular and irregular
shapes using cubes (which are three-dimensional shapes).

1. There are two ways to arrange four cubes into a
regular shape so that they touch on at least one full
face each. Can you create these two shapes of four
cubes each?

2. Next, build an irregular shape, this time using only
three cubes. You can make only one irregular shape
out of three cubes. As in step 1, be sure that the
cubes touch another cube on at least one full face.

3. When you’ve found the shape, glue the three cubes
together. (Check with your teacher before gluing if
you’re not sure you have the right shape.)

5

These are called regular arrangements
because they are so symmetric—if you
divide the shapes in half (horizontally or
vertically) with a straight line, each half
will look the same.

4. Now try to find the six irregular shapes made from
four cubes. When you find an arrangement, glue
the four cubes together.

To check if you have found a new arrangement,
pick up your new shape and turn it all around
and upside down. If it still doesn’t look like
any of the other arrangements you’ve found, it
must be a new shape.

1

2

3

4

5

6

5. Now that you have found all six irregular arrange-
ments of four cubes, and the one irregular
arrangement of three cubes, you will notice you
have used 27 cubes in all. It turns out these
shapes will fit together to make all sorts of inter-
esting things . . . including a 3 x 3 x 3 cube!
Fitting the pieces together may drive you and
your friends crazy for quite a while. The finished
cube is called a soma cube.

6. After you’ve figured out how to fit all of the pieces
into a cube, you can have fun making all sorts of
different shapes. See how many you can find!

Big Ideas for Small Mathematicians, 2007 © Zephyr Press 
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DIVISIBILITY CIRCLE
Activity

6
The BIG Idea
Some numbers can be divided exactly by other numbers
and some can’t.

Content Areas in This Activity
• Multiplication, single digit (optional)
• Division, single-digit divisor (optional)
• Prime numbers
• Geometric patterning
• Geometric terminology

Process Skills Used in This Activity
• Reasoning
• Hypothesizing (optional)
• Creativity
• Aesthetics of mathematics

Prerequisite Knowledge and Skills
• Multiplication, single digit (helpful)

Age Appropriateness
Children of nearly any age will enjoy making patterns with
the yarn. After about age seven, they can start to see the
products of numbers in the regular polygons: For example,
they can see that a square created on a divisibility circle
with 12 notches is four sides of three units, and four groups

of three is 12, or 4 x 3 = 12. Children from age eight or
nine may be able to see the result of the numbers that divide
evenly into 12, those that don’t divide evenly, and why.

Mathematical Idea
Some numbers can be divided exactly by other numbers.
For example, 12 is divisible by 2, 3, 4, and 6. Some num-
bers, like 5 and 7, can only be divided by 1 and themselves.
These are called prime numbers. The numbers that divide
exactly into a given number are called factors. The number
12, for example, has a lot of factors: 2, 3, 4, and 6 all di-
vide evenly into 12, and so they are called the factors of 12.

This activity illustrates the above concept of divisibil-
ity geometrically. If we make a 12-notched divisibility
circle, and wind the yarn around every fourth notch, we
make an equilateral triangle (all the sides have the same
length). If we wind it every second notch, we will have a
hexagon (see the illustration on page 31). All these num-
bers (3 and 4, as in the three sides of the triangle wrapped
around every fourth notch, and 6 and 2, as in the six sides
of the hexagon wrapped around every second notch) are
factors of 12.

If we wind the yarn by a number of units such as 5,
which does not divide exactly into 12, it will not make a
regular (all sides equal) polygon, but it will make some
other interesting shapes, such as star shapes, if we keep
winding!
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Divisibility circles can also be made with other num-
bers of notches, but beware: If you choose a prime number
like 7 or 11, you will only be able to form the regular
polygon with that number of sides.

Composite number: A number that has whole number
factors is a composite number; in other words, it has
numbers that divide into it with zero remainder other
than 1 and itself. Numbers that do not have such
factors are prime. For example, 6 is composite because
it can be divided by 2 and 3, with zero remainder. Note:
By convention, 1 is considered to be neither prime
nor composite.

Diameter: The distance across a circle, through the center,
is called the diameter.

Divisibility: The divisibility of a number describes whether
any numbers can be divided into it with no remainder.
For example, 10, 15, and 20 are divisible by 5. The
divisibility rule for 5 is that 5 will divide evenly (with
no remainder) into numbers that end in 5 or 0.

Equilateral: A figure with all sides equal (which will make
the angles equal, too) is equilateral. We refer to a
triangle with all three sides equal as an equilateral
triangle. We generally call an equilateral rectangle a
square, so we don’t really need the term equilateral in
that context. For pentagons and shapes with more sides
than that, the term regular is generally used to imply
the sides are equal.

Factors: Numbers that divide evenly (with no remainder)
into a number are factors of that number.

Hexagon: A shape with six sides is a hexagon. A regular
hexagon is a shape with six equal sides.

Pentagon: A flat geometric shape (polygon) with five
sides is a pentagon.

Polygon: A flat (two-dimensional) shape with straight
sides is a polygon. For example, a hexagon is a polygon
with six sides.

Prime number: A number that has no factors other than
itself and 1 is a prime number. That is, it can’t be divided
evenly (with no remainder) by numbers other than itself
and 1. For example, 5 is prime because 5 = 1 x 5 only,
but 6 is not prime because 6 = 2 x 3 as well as 1 x 6.

Product: The result we get when multiplying two or more
numbers is called a product. For example, multiplying
2 times 3 gives a product of 6.

Regular and irregular: In polygons, a regular polygon
means one with sides of equal length. So a square is a
regular polygon, but a rectangle is not (unless it is a
square rectangle). An irregular polygon is one with
sides of unequal length.

Square: A polygon (that is, a flat shape) with four equal
sides is called a square.

Triangle: A three-sided flat (plane) figure (or polygon) is
called a triangle.

The hexagon has six sides,
each of which is two units long.
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Divisibility Circle: Making It Work

Objectives
• Children will connect the idea of factors to a geo-

metric image.

• Children will play with number combinations in a
geometric way.

• Children will enjoy creating mathematical patterns.

Materials
✔ circle cut out of cardboard, about 8" (20 cm) in

diameter, for each child

✔ circular object, such as a coffee can (optional)

✔ 6' to 8' (about 2 to 2.5 m) bright yarn (or string)
per child

✔ tape for each child or small group

✔ adult scissors to poke a hole through the cardboard
center

✔ scissors for each child or small group

✔ a clock face that’s slightly larger than the circle
(optional)

✔ photocopy of Divisibility Circle Activity Sheet (page
34) for each child

Preparation

• Prepare the cardboard circles (with an 8-inch, or
20-cm, diameter) for each child. You can use a cir-
cular object, such as a coffee can base, as a template
for tracing the circle.

• For younger children, precut the notches as well. You
can cut the 12 notches evenly around the perimeter

by laying the cardboard down over a clock face.
Alternatively, you could fold a paper circle into
quarters, then continue to fold the quarter-circle
into thirds. When you open the paper, you will have
12 fairly evenly spaced folds. You can then use this
as a template for cutting the 12 notches. If you cut
the notches in a V shape, the children can wrap the
yarn around the back to get to the next notch. Or
you could cut each notch as two side-by-side slits.

• Using adult scissors, poke a hole in the center of
each circle, through which the children can thread
the yarn and knot it or tape it in place.

• Cut the yarn or string into pieces 6 to 8 feet (about
2 to 2.5 m) long for each child.

Procedure
1. If you haven’t precut the notches, have the chil-

dren do so, taking turns using the clock face or
paper circle (described above) as a template for
where the notches should go.

Stars and hexagons are just a few of the
possible shapes children can create.
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Suggestions

All children can enjoy exploring other shapes, too, such
as stars.

Assessment
Looking at the shapes produced will provide a visual as-
sessment. For older children, the activity could be tied in
to a look at factors and divisibility. Assess their compre-
hension of these concepts and their ability to use the
terminology correctly with the use of the divisibility circle.

2. Then each child threads the yarn (or string) through
the hole, knotting it or taping it down to the back
of the circle.

3. Encourage the children just to play with the circle
at first. They may soon notice that they can make
interesting patterns. Children may need a little help
initially to see how to wrap the yarn around the
back to the next notch, then through that to the
front again, so it will outline a shape on the circle.

4. Once children understand how to create shape out-
lines, ask them to make specific shapes, such as a
square, an equilateral triangle, or a regular hexagon
(introduce terminology as needed). Ask older chil-
dren if they can make a five-sided figure (a regular
pentagon), and encourage them to think about why
not. This is a good environment to talk about prod-
ucts, factors, divisibility, and even prime numbers
for children in fourth or fifth grade.

Children can experiment with
all kinds of shapes using their
divisibility circles.

Extension Activity
Children can make divisibility circles with
other numbers of notches. For example, what
shapes can they make with a circle of nine
notches? Ask the children if they make a
divisibility circle with a different number of
notches, would they be able to make as many
polygons? Why or why not? If they make
one with 11 notches, which regular polygons
(square, hexagon, and so forth) could they
make? Encourage exploration of prime and
composite numbers for as long as it is fun!
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Divisibility Circle
Activity Sheet

1

2

3

4

With a divisibility circle, you can make interesting pat-
terns and investigate some mathematics too, particularly
geometric shapes.

1. If your teacher hasn’t already done so, cut 12 evenly
spaced notches in your circle. A clock face is a help-
ful model for where to place each notch.

2. Next, poke a hole in the center of your circle and
thread the piece of yarn through it. Knot the yarn
or tape it down on the back of the circle.

3. Try to make some geometric shapes by wrapping
the yarn around the notches, from front to back to
front again, to make the sides of shapes. For ex-
ample, you can make a square by wrapping the yarn
around every third notch, or an equilateral triangle
by wrapping it around every fourth notch.

4. Can you make a six-sided figure, a hexagon, with
all sides equal? Can you predict whether you could
make a pentagon with all five sides the same length?
Why or why not?

Have fun investigating polygons and then try mak-
ing some star shapes.

An equilateral triangle is a triangle with
sides that are all the same length. Other
shapes with sides of the same length are
called regular polygons.

6

5

Big Ideas for Small Mathematicians, 2007 © Zephyr Press 
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DISCOVERING PI
Activity

7
The BIG Idea
There is a relationship between the diameter and cir-
cumference of all circles: We call it pi.

Content Areas in This Activity
• Multiplication, single digit
• Division with calculator (optional)
• Circle measurement
• Geometric terminology

Process Skills Used in This Activity
• Hypothesizing (optional)
• Problem solving
• Concept of proof (optional)

Prerequisite Knowledge and Skills
• Addition, single digit
• Addition, double digit
• Multiplication, single digit (helpful)
• Division, single digit (helpful)

Age Appropriateness
Children will find the direct relationship harder to dis-
cover if they are not familiar with multiplication.
Eight-year-olds are sometimes able to think about multi-
plication by three as “three groups of something.” Younger

children may be able to see the “add six” relationship in
the first part of the activity, and the “add up the diameter
three times” in the second part of the activity, but they
may not be able to connect the two.

Children need to be familiar with division for the sec-
ond extension activity of calculating pi more accurately.

Mathematical Idea
There is a relationship between the diameter of a circle
and the distance around it, the circumference: C = pi x D.
As the diameter increases by 1, the circumference will in-
crease by slightly more than 3, or the number pi. The actual
number pi represents is 3.14159 . . . with the decimal places
going on forever. We use the Greek letter π to symbolize
pi. Children can discover an approximation of this rela-
tionship themselves with this two-part activity.

In the first part, children create rings of pennies to
discover that with each new ring, they add two pennies to
the diameter and six pennies to the circumference (which
is three times the number of pennies added to the diam-
eter). Children can make a chart to find out that each new
ring always adds three times as many pennies to the cir-
cumference as to the diameter.

They can also have fun measuring other circles to verify
the idea in the second part of this activity. Circles on the
playground are ideal, but you can also create circles with
chalk on the floor or use the circles that may already exist
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HELPFUL TERMSon a gym floor. The bigger the diameters and circumfer-
ences of the circles, the more accurate the results will be.
The diameter will always be just over three times the cir-
cumference.

Circumference: The perimeter of, or distance
around, a circle is called its circumference.

Diameter: The distance across a circle, through
the center, is called the diameter.

Pi: This is the name for a special number (3.14159
. . .), written using the Greek letter π, that is
the number of times you have to multiply the
diameter of a circle to get the circumference.
Pi’s decimal expansion goes on forever.

Product: The result we get when multiplying two
or more numbers is called a product. For
example, multiplying 2 times 3 gives a product
of 6.

Measuring the diameter using string—your students will
try this with much larger circles.

The circumference will be about three times as long as
the diameter.
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Discovering Pi: Making It Work

Procedure 1: Penny Circle
The two parts of this activity can be done one after the
other or at different times.

1. Start with the penny circle by having the children
put one penny in front of them and then create a
circle around this penny.

Objectives

• Children will discover the relationship between di-
ameters and circumferences of circles.

• Children will construct an approximation of the
number pi.

Materials

✔ about 40 pennies or small circular disks for each
child

✔ string for each child (how long depends on the size
of the circles you choose to have children measure)

✔ calculator for each child or small group

✔ scissors for each child

✔ yard stick (or meter stick) for each child or small
group

✔ chalk or masking tape (optional)

✔ photocopy of Discovering Pi Activity Sheet (pages
40–41) for each child

Preparation

Choose (and create, if necessary) what circles to have the
children measure for the second part of the activity. You
can use circles already drawn on the playground or gym
floor, or use chalk to trace around a circular object, such
as a garbage can.

The first ring of pennies.

2. Discuss the concepts of diameter and circumference
so that children understand the idea, if not the ac-
tual terminology, of how many pennies go across
the circle versus how many pennies go around.

☞Children may need to build the first
penny ring with an adult. It may be
helpful to mark the center penny in
some way, such as with a small object
on top, to help keep the construction
clear when the rings get large.
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3. Next have the children add a ring of pennies around
the first ring so that the pennies in both rings touch.
How many did they add to the diameter with this
second ring? This number is already recorded on
the Penny Circles Chart (page 41) on their activity
sheets to get them started.

4. Now have them count how many pennies are in
the second ring (that is, how many pennies make
up the circumference of the second ring). Ask them
how many more pennies are in this ring than in
their first ring. Have them record this number on
the chart on their activity sheet, next to Ring 2,
under “Pennies added to circumference.” They
should record “+6” because the first ring has six
pennies and the second ring should have 12.

5. Have them repeat the process by adding more rings
of pennies, each time counting how many pennies
they added to the diameter and to the circumfer-
ence, recording both numbers in the chart. The
chart is set up to record five rings, but building three
or four rings should be enough to see the “+2 across,
+6 around” pattern.

Children will enjoy counting and recording the
number of pennies in the rings. They will soon see
that the number in the ring goes up by six each
time. They need to be encouraged, however, to re-
late this to the increase in the diameter. Remind
them that adding a new ring adds two pennies to
the diameter. So if the diameter goes up by two, the
circumference goes up by three times that much,
or six.

Procedure 2: Large Circles

The next part of this activity involves measuring the di-
ameters and circumferences of large circles, on the
playground or on the gym or classroom floor. The larger
the circles you choose, the more accurate the measure-
ments will be.

1. Have each child use a yard stick (or meter stick) to
measure the diameter of the first circle you’ve cho-
sen and record this on the Large Circles Chart (page
41) on their activity sheets.

☞

2. Next they use string to measure the circumference
of the circle. Each child wraps the string around
the circle and cuts it to size. Then the child can
measure the string using the yard stick and record
the measurement in the circumference column for
the first circle on the Large Circles Chart.

Children unable to multiply should be
directed to measure the diameter first
using string instead of the yard (or
meter) stick, and then see how many
of those lengths are needed to go
around the circle. It should be about
three of the diameter lengths. Using
this method eliminates the need to
measure the string at all.
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3. After they measure the first circle or two, have them
measure just the diameter of a third circle and see
if they can guess what the circumference will be.
Older children will be able to use a calculator with
assistance to find out a good approximation of the
ratio of diameter to circumference. The Large Circles
Chart is set up for five circles, but of course your
class can do more or fewer depending on how
quickly they pick up on the diameter-circumference
relationship. Alternatively, each group can do one
circle, then all groups can share their measurements
on the board.

4. Once they see the relationship between the diam-
eter and the circumference, ask if they think that
relationship will be true for all circles. Can they
think of something else circular they could apply
this new idea to, measuring just the diameter or
just the circumference and figuring out the other?

Suggestions

• It may be helpful to leave the penny circles for a
while and go on to the next part of the activity, then
come back to the pennies. The larger circles of the

second part of the activity will give more accurate
results. Often a child will then notice that the di-
ameter-circumference relationship is the same as
in the first part of the activity.

• Constructing chalk circles on the floor with diam-
eters of whole numbers of units, such as 1 yard or
1 meter, will make the result clear for children just
learning to multiply.

Assessment

Children can explain the diameter-circumference relation-
ship to a peer or an adult. They can predict the approximate
circle circumference for a given diameter.

☞Depending on the children’s age, you can
explain the number three further as the
special number pi, discovered long ago by
geometers but still fascinating to mathema-
ticians. This could also be a time to introduce
the idea of “going on forever” as the digits
of pi do.

Extension Activities
• Ask children, “If you knew the diameter of

the Earth, how could you find the distance
around the world at the equator?”

• Discuss with children that although it may
seem that the circumference is always three
times the diameter, the actual number is
an endless decimal number that starts with
3.14159. Mathematicians named it pi after
one of the Greek letters, a long time ago
(we use the Greek letter π for it). Ask the
children to see how accurately they can
calculate pi by measuring the diameter and
circumference of a very large circle carefully.
Hint: If C = π x D then C ÷ D = π
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Here are two different activities involving circles that
will help you discover the mathematical relationship be-
tween the distance across a circle and the distance around
a circle.

Penny Circles
1. Start with one penny in front of you, then make a

ring of pennies around that one. Your ring should
have six pennies in it. These pennies are the cir-
cumference of the circle (the distance around it).

2. Now make a second ring of pennies around that
first ring. Count how many pennies you added to
the diameter (to the number of pennies going
across). Remember that adding a new ring adds one
penny to each side. Check that the answer you got
is the same as what is already filled in in your Penny
Circles Chart.

3. Next count how many pennies are in the second
ring. How many more pennies are in this ring than
are in the first ring? Write this number in “Pennies
added to circumference” column in the Penny
Circles Chart (next to the “+2”). What do you pre-
dict will happen if you make a third ring of pennies?
How many pennies will you add to the diameter?
How many will you add to the circumference?

4. Add another ring of pennies and count how many
pennies you added to the diameter and write this in
the “Pennies added to diameter” column in the Ring
3 row.

5. Count how many pennies you added to the circum-
ference and write this in the “Pennies added to
circumference” column for Ring 3.

6. Continue building rings and filling in the chart until
your teacher tells you to stop. Can you make a pre-
diction about the relationship between the amount
the diameter increases and the amount the circum-
ference increases? Do you think they are related?

Large Circles
1. For this part of the activity, you will be measuring a

few large circles. Use a yard or meter stick to mea-
sure the distance across the circle (diameter).
Record this in the Large Circles Chart, in the “Di-
ameter” column for Circle 1.

2. Next use string to measure the distance around the
circle (circumference). Do this by laying out the
string exactly along the circle’s edge, cutting the
string once you’ve gotten back to the beginning.
Then measure the string. Write this measurement
in the “Circumference” column for Circle 1.

3. Now measure a second circle, starting with the di-
ameter. Can you predict how big the circumference
will be if you know the diameter? (Use a calculator
to help you if you like.)

Do you think the same relationship will hold
for all circles? Can you think of an example of some-
thing circular you could measure using your idea?
Continue measuring any circles your teacher pro-
vides, recording your measurements on the chart.

1

2

3

4

Discovering Pi Activity Sheet7a

1

2

3

5

6
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Penny Circles Chart

Discovering Pi Activity Sheet

Ring 2

Ring 3

Ring 4

Ring 5

Pennies added to diameter Pennies added to circumference

+2

Large Circles Chart

Circle 1

Circle 2

Circle 3

Circle 4

Circle 5

Diameter Circumference

7b
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TESSELLATIONS
Activity

8

The BIG Idea
Tiles completely covering the floor can have lots of
shapes. Just ask Escher!

Content Areas in This Activity
• Areas of squares
• Geometric patterning
• Pattern rules
• Transformational geometry

Process Skills Used in This Activity
• Creativity
• Aesthetics of mathematics

Prerequisite Knowledge and Skills
None

Age Appropriateness
Younger children will be able to trace the template if they
have help cutting it out and if the original shape is rea-
sonably large. Children over eight or so will be able to
accomplish the activity unaided and will be able to be more
creative in composing a design or image with the template.

Mathematical Idea
A tessellation is a shape that can completely cover a sur-
face and keep on covering as big a surface as we like,
repeating the shape without gaps between repetitions. For
example, kitchens are often covered with square tiles, but
tiles can be lots of different shapes and still completely
cover the floor without gaps.

There is a legend that an ancient slave broke a tile
when tiling a wall. In order to escape a beating, he created
a pattern with all the tiles broken in the same way to cover
the wall. Luckily, the method was acceptable to the mas-
ter and became popular!

This activity explores tessellations by demonstrating
that a square cut into pieces and rearranged still has the
same area as the original square. Creating a tessellation
shape and translating it (the mathematical word for mov-
ing it around) on the plane can result in great patterns.

Children will create new designs by rearranging parts of
a square, so this activity is not only a learning opportunity
but an artistic one as well. The tessellations environment
is perfect for discussions of conservation of area and ex-
perimentation with translations, and it also allows for
individual creativity.
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HELPFUL TERMS

Area: Area is the number of 1 x 1 squares that it takes
to cover a surface. For example, the area of a 2-
inch by 3-inch rectangle is 6 square inches (that
is, 2 x 3 = 6); in other words, it takes six 1-inch by
1-inch squares to cover it.

Conservation of area: This term refers to the idea
that if you arrange sections of an area differently,
the total area (the sum of the areas of the pieces)
remains the same.

Patterns: Sets of items, such as numbers or shapes,
that are continued in a predictable way are called
patterns. Patterns created using shapes are called
geometric patterns.

Reflection: Literally, a reflection is what you see when
you look in a mirror, or the “mirror image” of
something. In transformational geometry,
reflection involves flipping an object, often to see
if it looks the same (or the opposite) when flipped.

Rotation: When you move (or turn) an object in a
circular path around a point called the center, you
are rotating the object. For example, the tip of a
clock hand rotates around the center of the clock;
it follows a rotational pattern.

Square: A polygon (that is, a flat shape) with four
equal sides is called a square.

Tessellation: A geometric pattern created by repeating
a shape that can completely cover a surface forever
is called a tessellation. A tiled floor is a simple
tessellation.

A tessellation design created by rearranging the
pieces of a square

Transformational geometry: The geometry of
moving shapes around. For example, translations
(slides), rotations (turns), and reflections (flips)
are movements that are possible in transformational
geometry.

Translation: Also known as sliding, translation means
moving an object from one position to another in
a straight-line movement.
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Tessellations: Making It Work

Objectives

• Children will learn about conservation of area.

• Children will enjoy visualizing and creating patterns.

• Children will experience basic transformational
geometry.

Materials

✔ 8 1/2" x 11" or 11" x 17" sheet of paper for each
child

✔ pencil for each child

✔ scissors for each child

✔ transparent tape for each child

✔ small square of light cardboard for each child, about
11/2" x 1 1/2" (4 cm x 4 cm) or 2" x 2" (5 cm x 5 cm)

✔ crayons or colored pencils for each child or small
group

✔ photocopy of the Tessellations Activity Sheet (on
page 46) for each child

Preparation
• The well-known artist Escher made these tessella-

tions famous. You can find lots of great pictures by
searching for M. C. Escher on the web. There are
also several books available that include pictures
of Escher’s work, such as Escher’s own titles: The
Graphic Work: Introduced and Explained by the Art-
ist, translated by John E. Brigham (New York:
Taschen, 1992), and Escher on Escher: Exploring the

Infinite, translated by Karin Ford (New York:
Abrams, 1989). Pictures of Escher tessellations are
always stimulating for the kids.

• Cut out the cardboard squares according to the di-
mensions in the materials list. The larger size squares
are easier for younger children to manipulate.

Procedure
1. Starting with a cardboard square, each child cuts

out a piece of the square from the left or right side
and slides that piece across the square, taping it to
the opposite side (as shown in the example on the
activity sheet, page 46). It may be necessary to help
young children (six- or seven-year-olds) cut out
the template after they draw where they want the
lines cut. It is important to cut the pieces out from
the side only, and not to cut past the corners.

2. Next the children cut a piece out of the bottom or
top of the square, again not cutting past the cor-
ners, and tape it on the opposite side. This is a great
time to discuss transformational geometry and con-
servation of area. You don’t need to introduce the
terminology to younger children, but you can still
discuss the concept: Ask children if they think the
new shape covers the same area as the square did.

☞If children are unsure if the new piece has
the same area or not, it may be helpful
to ask, “Where is the paper we added or
removed?” to help them realize the area
is the same.



45

Tessellations

3. They then use this newly created template to trace
the pattern onto a blank piece of paper. They should
trace the pattern a number of times, leaving no gaps
between each shape they trace, so the shapes fit
together repeatedly across the page (as in the ex-
ample below).

4. After they finish filling their pages with their de-
signs, the children color them. Drawing or coloring
on the finished design helps bring the shapes to life.

Suggestions
• Children translate these shapes vertically and hori-

zontally to create the design, giving them experience
with transformational geometry. This activity would
usefully precede a classroom discussion of transla-
tions, if you don’t discuss them during the activity.

• Teachers might want to do this one in art class to
get a little extra math time!

A tessellation pattern made from tracing a template repeatedly,
with no gaps between shapes.

Extension Activities
• Children could create a design that forms

a recognizable image, such as birds flying
or fish swimming.

• Children could create different designs by
starting with a rectangle or parallelogram
instead of a square, or they could use
equilateral triangles (arranged within
hexagons so that the hexagon looks almost
like a wheel with spokes) as the shape to
tessellate. At first it might be easiest just
to tessellate the two sides of the triangle
within the hexagon (the spokes), ignoring
the sides of the triangles that form the sides
of the hexagon, but another challenge can
be to figure out how to include the third
side of each triangle when assembling the
tessellated shapes.

Assessment

If the finished design could keep on going and going in all
directions, in the same pattern, then the child has suc-
cessfully created a tessellation pattern.
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Tessellations Activity Sheet

1

2

3

4

In this activity, you get to create a work of art using just
a plain old square. You could use a lot of these squares
to cover a floor, just like tile in a kitchen, but other shapes
will cover the same surface.

1. Starting with a cardboard square, cut out a shape
from the left or right side (without cutting past the
corners), slide it across the square, and tape it onto
the other side. See the example below. You don’t
have to cut the same shape as in this example,
though!

2. Cut a piece from the top or bottom, slide it to the
other side, and tape it on.

3. This shape is now your template to trace onto your
piece of paper. Trace the shape a number of times,
so the pieces fit together on the page without any
gaps. This should result in a repeated design where
the pieces fit together just like a tile floor. The tes-
sellation would keep on going forever if you had
the time to trace it!

4. Now you can decorate your pattern by coloring in
each section. The artist M. C. Escher was famous
for pictures made in this way.

5. Do you think the area of the new pattern shape is
the same as your original square? Why or why not?
Can you think of any shapes, other than a square,
that would work in this same way?

And rearrange it by cutting a piece from one
side and taping that piece to the other side.

Start with your cardboard square . . .

5

8
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GEOMETRIC
MEMORY GAME

Activity

9
The BIG Idea
Our minds can picture and recall detailed geometric pat-
terns. Sometimes kids are even better at this than
grown-ups!

Content Areas in This Activity
• Geometric patterns
• Geometric recall

Process Skills Used in This Activity
• Problem solving
• Aesthetics of mathematics

Prerequisite Knowledge and Skills
None

Age Appropriateness
Children of all ages seem to enjoy playing this game. For
very young children, you could reduce the number of pairs
and create the disks yourself. The more difficult and subtle
the patterns and the more similar the coloring of the pieces,
the harder it will be to play.

Mathematical Idea
Spatial reasoning is a somewhat different skill than math-
ematical ability and may be improved with practice. Many
children have excellent memories for pattern and shape,
and this game is fun because children often legitimately
beat the grown-ups at it.

Making the game pieces in a group gives experience
with creating and discerning patterns, as well as creating
a feeling of ownership of the game. As at least 20 pairs of
the disks are needed for a good game, it works best if a
reasonably large number of children are involved in the
creation of the Memory pieces. Alternatively, they could
be created in advance by a parent or teacher, or drawn by
the grown-up and colored by
children. A special theme
such as fractions or rotated
patterns (such as circles using
rotational symmetry) might
be imposed if desired. But no
matter what, the patterns are
bound to be interesting and
worthy of discussion.

Constructing pairs of game pieces.
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HELPFUL TERMS

Angle: The amount of rotation needed to get from one
direction to another is an angle. Often we speak of the
angle between two lines: This is the amount of rotation
needed to get from one line to the other. It is often
measured in degrees (see also degree).

Degree: A unit for measuring rotation, abbreviated as °, is a
degree. A complete rotation is said to be 360 degrees.
This comes from the historical thought that it took 360
days for the Earth to revolve once around the sun. Two
lines at right angles form angles of 1/4 rotation, which is
90 degrees (that is, 360 divided by 4).

Fractions: Fractions are pieces into which a whole can be
divided. If A has 1/2 of a pizza and B has 1/3 of the pizza,
then C has the remaining 1/6; these three fractions make
up the whole.

Hexagon: A shape with six sides is a hexagon. A regular
hexagon is a shape with six equal sides.

Parallelogram: A four-sided shape (quadrilateral) that has
parallel opposite sides is a parallelogram. Opposite sides
are also equal. A rectangle is a special parallelogram in
which the angles are 90 degrees.

Patterns: Sets of items, such as numbers or shapes, that are
continued in a predictable way are called patterns.
Patterns created using shapes are called geometric
patterns. Rotational patterns are patterns created by
rotating a shape or image. For example, a minute hand
traces a rotational pattern around a clock face.

Pentagon: A flat geometric shape (polygon) with five sides
is a pentagon.

Polygon: A flat (two-dimensional) shape with straight sides
is a polygon. For example, a hexagon is a polygon with
six sides.

Reflection: Literally, a reflection is what you see when you
look in a mirror, or the “mirror image” of something. In
transformational geometry, reflection involves flipping
an object, often to see if it looks the same (or the opposite)
when flipped.

Rotation: When you move (or turn) an object in a circular
path around a point called the center, you are rotating
the object.

Square: A polygon (that is, a flat shape) with four equal
sides is called a square.

Symmetrical: A design with parts that are the same on both
sides is a symmetrical design: For example, by reflecting,
we can create a design with two identical halves.

Transformational geometry: The geometry of moving
shapes around is transformational. For example, transla-
tions (slides), rotations (turns), and reflections (flips) are
movements that are possible in transformational geometry.

Translation: Also known as sliding, translation means
moving an object from one position to another in a
straight-line movement.

Triangle: A three-sided flat (plane) figure (or polygon) is
called a triangle.

Wedge: A pie-shaped fraction of a circle is a wedge.
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☞

Geometric Memory Game: Making It Work

Objectives

• Children will practice shape recognition and retention.

• Children may develop an understanding of and ter-
minology to describe patterns.

Materials

✔ pencil for each child

✔ scissors for each child or small group

✔ glue stick for each child or small group

✔ markers or colored pencils

✔ 20 to 40 light cardboard circles or frozen juice can
lids per game set

✔ photocopy of the Geometric Memory Game Activ-
ity Sheet (on page 51) for each child

Preparation
• The disks can be prepared according to the direc-

tions either by the children or in advance by an
adult.

• Before starting this game, have a discussion about
patterns, particularly identical patterns, symmetry,
shapes, and any other geometric ideas you wish to
introduce, depending on the children. You might
want to show example game pieces, flipping them
upside down and turning them around to show the
kids that the patterns may still match even if the
pieces are oriented differently.

Procedure

1. Have the children create at least one pair of identi-
cal game pieces. To do this, each child first draws a
pattern (using a pencil) on one of the circles on the
activity sheet.

Playing the game.

A lternatively, you could pass out
the cardboard or juice lid circles and
have them draw directly on those
using markers (on lids or cardboard)
or colored pencils (on cardboard).
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2. The second game piece will need to have exactly
the same pattern as the first. The children can draw
it again on the second circle on the activity sheet
(or directly on the lids or cardboard), or you can
photocopy their patterns to make the second piece.

3. Have the children color in both pieces, using the
same colors on both so that the pieces are identical.

Suggestions

• An adult creating the pieces might also facilitate
the creation of patterns that differ more subtly,
making the game more challenging.

• Another option would be for the adult to create pen-
cil outlines of more complicated rotational designs,
make a copy of each, and have each child color one
pair the same.

Assessment

• Children enjoy this activity as a game, but it can be
an interesting view into their ability to create, rec-
ognize, differentiate, and remember patterns and
geometric images.

• Children need to notice what is the same and what
is different in the pieces.

4. Then the kids cut out the circles and glue them
onto the cardboard or juice lid circles. Once everyone
has finished, the game is ready, unless you’d like each
child to create more than one pair. Have the kids
make a total of 10 to 20 pairs for each game set.

5. The game is played just like the traditional game of
Memory. Shuffle the pieces and lay them face down
on a table. In groups of two or three, the children
take turns flipping over two game pieces. If the
pieces are identical, that child keeps them and gets
to take another turn. Otherwise, after everyone has
a chance to see them, the child flips them back over
and the next child takes a turn. The game contin-
ues until all of the pieces are gone, and the child
with the most pairs wins!

Extension Activity
Construct the game according to a particular
geometric theme, such as different types of
triangles or rotational symmetry, and discuss
the names and classifications involved, such
as different types of triangles or examples
of how to rotate shapes and designs to create
symmetry.

Coloring the pieces.
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Geometric Memory Game
Activity Sheet

There are two parts to this activity: creating the game
and playing it. Basically, the game is the normal memory
game, where you try to pair up matching game pieces,
but the shapes will be geometric patterns.

Create the Pieces
1. Using a pencil, draw a pattern or design in one of

the circles below. You might try to incorporate frac-
tions, such as a 1/8 pattern that divides the circle into
eight wedges, or use a pattern with some symme-
try to make your design mathematically interesting.

2. When you are finished with the design, trace it onto
the second circle.

3. Then color in both circles exactly the same so they
make an identical pair.

4. Cut out the circles and glue them onto light card-
board disks or juice container lids to make them
sturdier.

5. If you are making more than one pair of disks, try
to make each pair similar looking in some way to
the other pairs, but not identical. This will make
the game more difficult and more fun to play.

Play the Game
1. This game is played like a regular Memory game.

Two to three people can play. Shuffle the disks and
arrange them face down.

2. Players take turns turning over two disks, trying to
get a match. Everyone gets to see the disks before
the player turns them over again. If the two disks
are a matching pair, the player gets to keep them
and then gets another turn. Play continues until all
disks are taken, and the player with the most pairs
wins. Have fun practicing your geometric memory!Draw a design or pattern in one circle and copy it in the

second circle.

9

1

2

3

4

5

1

2
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THE THREE BEARS
Activity

10
The BIG Idea
Our number system is based on “packages” of 10.

Content Areas in This Activity
• Addition, single digit
• Addition, double digit
• Place value to 100

Process Skills Used in This Activity
• Reasoning
• Problem solving
• Communication

Prerequisite Knowledge and Skills
• Place value to 10 (helpful)
• Addition, single digit

Age Appropriateness
The three-digit portion of this activity would be useful for
children age eight or nine, when they usually start work-
ing with three-digit numbers in operations.

A simpler version of the activity could be done with
younger children, starting with only two-digit addition
without regrouping, working up to regrouping from the
ones to the tens, and then gradually moving to include
the hundreds column when appropriate.

Mathematical Idea
One of the big differences in levels of understanding of
basic numeracy relates to the notion that the number sys-
tem is based on place value. By this we mean that in the
number 123, the 1 and the 3 mean something different.
Children who have worked extensively with place value
manipulatives tend to refer to the “1” as “one hundred”
and the “2” as “twenty” more often than children who
have just learned the rules.

Regrouping in addition and subtraction requires a good
knowledge of place value to understand fully. This activ-
ity uses the analogy of receiving and shipping to model
these two operations. Sometimes boxes or cases have to be
packed or unpacked. In the porridge factory, the packages
are the “ones,” the boxes (of 10 ones) are the “tens,” and
the cases (of 10 boxes or 100 packages) are the “hundreds.”
Children model re-
grouping by packing
or unpacking boxes
and cases.

The porridge factory
pieces: individual
packages, boxes of
10, and cases of 100.
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☞

HELPFUL TERMS
Base: The number of symbols in a number system

is its base. For example, in base 10 we use the
symbols 0, 1, 2, 3, . . . 9, and after 9 we start
again at 0 in the ones column and regroup the
one to the next column (tens), giving 10. Base
10 came about because we have 10 fingers, so
it is convenient. If we had only 6 fingers, maybe
our number system would look like this: 0, 1,
2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 20, 21 . . .
These numbers are in base 6. The number 21
in base 6 means 2 x 6 + 1, or 13 in base 10.

Place value: Place value refers to the idea that a
digit’s column affects its value. For example, a
2 in the ones column means 2, but a 2 in the
hundreds column means 200.

Regrouping: A more modern, more accurate term
for carrying is regrouping, which means moving
groups of 10 numbers from one column into
the next larger column. So if a list of numbers
adds up to 14 in the ones column, we write
the 4 in the ones column, regroup the 10 to a
1 in the tens column, and add it there. The
same applies to all columns.

Sum: Sum is a name for the number you get when
you add two or more numbers. For example,
the sum of 2 + 5 + 1 is equal to 8.

The Three Bears: Making It Work

The Digi-Blocks materials by Kool and
Galt (available at www.louisekool.com)
are base 10 blocks that actually resemble
boxes, ideal for this activity.

Preparation

If you don’t use base 10 blocks, you will need to prepare
the porridge pieces in advance by cutting out of paper or
light cardboard the package squares, in addition to gath-
ering enough raisin boxes and plastic food-storage bags.

Objectives
Children will learn the addition and subtraction methods
of regrouping by using manipulatives.

Materials
✔ photocopy of The Three Bears Activity Sheet (on

pages 57–58) for each child

✔ a set of base 10 blocks for each small group

or

✔ about 20 homemade “porridge” packages (small
squares of paper or light cardboard), 10 to 20 small
raisin boxes (which should be able to hold 10 pack-
ages each), and 5 to 9 plastic food-storage bags to
be cases (which should be able to hold 10 boxes
each) for each small group
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Procedure 1: Addition

1. Have the children get into groups of three and de-
cide who will be Baby Bear, who will be Mother
Bear, and who will be Father Bear. It would be ideal
if one of the group members could be an older
helper.

2. Explain that the Bear family works in a porridge
factory, and that each bear has a different storage
area in the factory. Baby Bear’s storage area can hold
only 9 packages of porridge. Show the children what
the packages look like—the individual squares—
and hand out 20 packages to the Baby Bear in each
group for use later.

3. Explain next that Mother Bear’s storage area is a bit
larger and can hold up to 9 boxes of porridge. Show
the children what a box looks like—a strip of 10
squares or a raisin box—and hand out 10 to 20
boxes to the Mother Bear in each group.

4. Finally, explain that Father Bear has the largest stor-
age area of all. He can hold up to 9 cases. Show the
children what a case looks like—a sheet of 10 strips,
or 100 squares, or a plastic food-storage bag—and
hand out 5 to 9 cases to the Father Bear in each
group.

5. Walk the children through the first or all of the fol-
lowing addition and subtraction problems. Start
with a simple addition problem using just pack-
ages and boxes. Remind them that each of them
can hold only 9 of their items. If they have 10 at
any point, they must group those 10 and give them
to the next person: Baby Bear gives groups of 10
packages to Mother Bear to box, and Mother Bear
gives groups of 10 boxes to Father Bear.

6. Tell the children that Baby Bear has 6 packages.
Have each Baby Bear count out 6 squares, push-
ing the others aside.

7. Mother Bear has 4 boxes. Have each Mother Bear
count out 4 boxes and push the others aside.

8. Next, tell them that 7 new packages have arrived.
Have Baby Bear group 10 packages and give them
to Mother Bear. Baby Bear could hand Mother Bear
the 10 packages, and she could put them in a small
raisin box or trade them for a strip of 10 squares.

9. Mother Bear now has another box. Ask the chil-
dren how many packages Baby Bear now has (3),
and how many boxes Mother Bear now has (5).
Show the children on the activity sheet (or write
on the board) the problem they just figured out:

10. Next the children try a problem with packages,
boxes, and cases. (Alternatively, you could make
up additional problems using just packages and
boxes if the children need more practice.) Start
by telling them that they just received another
shipment of 1 case, 6 boxes, and 8 packages.

11. Have the children count out each of these to add
to his or her current stock. Baby Bear already had
3 packages, so receiving 8 more should give him
or her a total of 11. Baby Bear should then group
10 of these packages as a box to give to Mother
Bear, keeping 1 package.

12. Mother Bear had 5 boxes, so 6 boxes from the
shipment and 1 box from Baby Bear give her 12

46
+ 7

53
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boxes in all. Now Mother Bear must group 10 of
her boxes into a case to give to Father Bear, keep-
ing 2 boxes.

13. Father Bear received 1 case from the shipment
and 1 case from Mother Bear, so he now has 2 cases.

will need to take those orders away from what they
have. If a customer wants more boxes than Mother
Bear has on hand, then Father Bear can unpack a
case to give Mother Bear more boxes. If a customer
wants more packages than Baby Bear has on hand,
then Mother Bear can unpack a box to give Baby
Bear more packages.☞Alternating this activity with more

traditional addition and subtraction
questions may be helpful.

14. Show the children on the activity sheet, or write
on the board, the problem they just solved.

15. Continue with addition problems using the
amounts in the chart on page 58 or making up
your own amounts for the children to try.

Procedure 2: Subtraction

1. Now it’s time to see what happens when the Bear
family starts selling porridge! Tell the children
that when they receive orders for porridge, they

221 means

2 hundreds (or cases)

2 tens (or boxes)

1 one (or package)

5. Have the children try more subtraction problems,
such as the ones in the chart on page 58, or make
up your own. Ultimately, children can progress to
working out these problems on their own.

168
+ 53

221

256
- 70
186

2. Start with the following example: Father Bear has 2
cases, Mother Bear has 5 boxes, and Baby Bear has
6 packages. Wait for all groups of children to gather
the correct number in front of them.

3. Now tell them a customer wants 7 boxes. Mother
Bear has only 5 boxes, so Father Bear will have to
unpack one of his cases to give Mother Bear 10
boxes to add to her 5 so she can give the customer
7. (You or another child in the class can pretend to
be the customer, or the children could just push
the materials aside into a “customer area.”)

4. Now ask the children how many cases, boxes, and
packages each has. Father Bear should have 1 case
left. Mother Bear should have 8 boxes left. Baby
Bear still has 6 packages. Show them on the activ-
ity sheet, or write on the board, the subtraction
problem they just solved.
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Suggestions

• Children who have memorized the addition and
subtraction regrouping rules without understand-
ing will be totally lost in the activity. If this is the
case, keep the activity to just ones and tens (pack-
ages and boxes) for a while.

• This activity is particularly important for children
having trouble understanding the traditional addi-
tion and subtraction procedures of regrouping. In
this activity, the regrouping operation is modeled
by packing and unpacking boxes and cases. Chil-
dren with a poor grasp of place value may need
support in this activity until they get the idea.

Assessment
• Assessment is likely to be ongoing, coupled with

traditional addition and subtraction questions.

• If children can model an addition or subtraction
question with regrouping using manipulatives such
as these, then they have a thorough understanding
of place value.

Extension Activity
Have the children try a sequence of products
being received and products being ordered.
Can they make the stock and the accounting
system balance?
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The Three Bears Activity Sheet

This game works well for three people to play together.
Each person is one of the three bears. Baby Bear has only
a small storage area and can’t store more than 9 packages
of porridge at a time. Mother Bear has a little more room—
she can handle up to 9 boxes. Each box contains 10
packages. And Father Bear handles the cases—up to 9 cases
at a time. Each case contains 10 boxes.

Receiving New Stock
1. When new product arrives from the other side of

the factory to be packaged, the bears (that’s you!)
try to box and case as much as possible. If stock is
already on hand, some existing stock may need re-
arranging. For example, if Mother Bear has 4 boxes,
and Baby Bear has 6 packages, and you receive 7
more packages, you’ll have 4 boxes and 13 packages.

2. Baby Bear sends 10 packages to be boxed. This box
of 10 packages is added to Mother Bear’s stock. Baby
Bear keeps the rest. So Baby Bear now has 3 pack-
ages, and Mother Bear now has 5 boxes. This is like

original amount: 46

new amount: 7

new total: 53

At the moment, Mother Bear has 5 boxes, and Baby
Bear has 3 packages.

MODELING THE FIRST EXAMPLE

Materials on hand:

Mother Bear’s 4 boxes

Baby Bear’s 6 packages

Now they get a new shipment:

So Baby Bear must
box up the packages:

The 3 packages
Baby Bear has left

Use 4 of the new shipment with the 6
Baby Bear already had on hand to make a

new box of 10 to give to Mother Bear.

The result:

Mother Bear now has 5 boxes, and Baby
Bear has 3 packages—53 packages total!

New shipment
of 7 packages

New shipment
of 7 packages

10a

1

2
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3. Let’s say we now receive a shipment of 1 case, 6 boxes, and 8
packages. Baby Bear already has 3 packages and gets 8 more,
which is 11 in all. So Baby Bear sends 10 to be boxed by Mother
Bear and keeps the last package.

4. Mother Bear has 5 boxes on hand, plus the 6 new boxes, and
1 new one from Baby Bear. This makes 12 in all. So she sends
10 to be put in a case by Father Bear and keeps the other 2.

5. So Father Bear has the 1 newly arrived case and the 1 from
Mother Bear, or 2 in all. We call this number

221
and it means
2 hundreds (or cases)
2 tens (or boxes)
1 one (or single package)

6. Try some different initial amounts by giving each player some
pieces and then processing a newly received amount. You can
make up your own or try the ones below. In each case, work
through the situation as above, and conclude with the total
stock now on hand.

The Three Bears Activity Sheet

Porridge Sales
1. In the middle of all this activity, sometimes you get orders for

porridge. If customers want more boxes than you have on hand
but you do have cases, you can unpack a case and use the 10
boxes. This is subtraction.

2. For example, you have on hand 2 cases, 5 boxes, and 6 pack-
ages, and a customer wants 7 boxes. So Father Bear unpacks 1
case and you get 1 case, 15 boxes, and 6 packages less 7 boxes
for the customer.

3. What do you have after sending out the 7 boxes? 1 case, 8
boxes, and 6 packages.

Cases Boxes Packages Total
1. On hand 0 7 3 _____

Received 1 5 0 _____

2. On hand 2 9 6 _____
Received 1 0 4 _____

3. On hand 2 3 9 _____
Received 2 6 23 _____

4. On hand 1 6 4 _____
Received 0 12 16 _____

Cases Boxes Packages Total
1. On hand 2 4 6 _____

Ordered 1 2 3 _____

2. On hand 3 2 5 _____
Ordered 1 3 0 _____

3. On hand 2 3 4 _____
Ordered 0 5 6 _____

4. On hand 3 6 5 _____
Ordered 2 6 6 _____

4. Now let’s say more customers want to order porridge. Try the
subtraction problems using the numbers below, or make up
your own.

3

4

1

2

3

4

5

6

256
- 70
186

10b
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Party Fractions

PARTY FRACTIONS
Activity

11

The BIG Idea
Equivalent fractions are found in lots of food servings,
and we all like to get our fair share!

Content Areas in This Activity
• Equivalent fractions
• Equivalent measures

Process Skills Used in This Activity
Reasoning

Prerequisite Knowledge and Skills
Fraction notation and meaning

Age Appropriateness
The first game would be more appropriate for primary
children (ages six to eight). Either game is appropriate for
ages nine and ten. Made-up games can work with any age.

Mathematical Idea
Fractions are often one of the first mathematical topics
with which children have insufficient concrete experience
to understand fully and soon resort to memorization—
the first step toward developing mathphobia later on. Game

environments and those related to food are great spaces
for experiencing and playing with concrete fractional
materials. This activity is only one possible example. Cut-
ting fruits at snack time provides good experience too.
For example, if one child gets a half of an apple, and an-
other gets two quarter sections, we can ask, “Who got
more?”

If you need to resort to algebraic methods to be sure
of a correct answer quickly, recall that 2/4 = 1/2 (2 divides
into both 2 and 4 to give 1/2). The idea behind this is that
dividing everything by 2 is like pairing the fractional
pieces; that is, the 2 out of 4 (the 2/4) is like 1 out of 2 of
the paired pieces. We used to say “cancel the 2” but now
the phrase “divides into” is used more in school because
it is more accurate. These algebraic skills are not needed
for this activity, and in fact it is better to work with the
concrete materials long before introducing the technical
skills.

The notion of equivalence may not be immediately
obvious to a child, and he or she may not agree initially
that two quarters and one half are the same. It is the dis-
cussion and the construction of these notions for the
individual child that is most important at this stage.
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Party Fractions: Making It WorkHELPFUL TERMS

Objectives
Children will gain an understanding of fractions, particu-
larly equivalent fractions, geometrically.

Materials

✔ ten cardboard circles at least 8" (20 cm) in diameter
for each group of four children

✔ a blank sheet of paper with an 8" (20-cm) circular
outline drawn on it for each child

✔ a die for each group of four children

✔ markers for each group of four children

✔ photocopy of the Party Fractions Activity Sheet (on
pages 63–64) for each child

✔ scissors

Preparation

• Prepare the circles by cutting them to size. Make
sure all circles are identical in size. You can also
use paper instead of cardboard, as shown in the
photos, but cardboard will produce a sturdier prod-
uct. The sheet of paper with the circle drawn on it
will be the cake (or pizza) pan and should not be
colored in.

• If you wish, you can decorate and cut out the cake
pieces in advance, following the directions opposite,
or just draw on the fractions (with at least two of
each circle divided into halves, thirds, quarters,
sixths, and eighths), leaving the decoration for the
children as part of the fun. (One circle for each set of
fractions is enough for just two children playing.)

Diameter: The distance across a circle, through
the center, is called the diameter.

Fractions: Fractions are pieces into which a whole
can be divided. If A has 1/2 of a pizza and B has
1/3 of the pizza, then C has the remaining 1/6;
these three fractions make up the whole.

Rotation: When you move (or turn) an object in
a circular path around a point called the center,
you are rotating the object. For example, the
tip of a clock hand rotates around the center
of the clock; it follows a rotational pattern.

Wedge: A pie-shaped fraction of a circle is called
a wedge.

A birthday cake with eight pieces (eighths).
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Procedure 1: Filling the Cake

1. First, have the kids get into groups of four. Give
each group ten circles to decorate as cakes (or piz-
zas), using the markers. An older helper might be
useful in each group for six- or seven-year-olds. (If
you use smaller groups, such as two or three, fewer
circles will suffice.)

2. Help each group of four divide the ten circles into
fractional wedges. Two of the circles should be di-
vided into halves, two into thirds, two into quarters,
two into eighths, and two into sixths. You can have
them draw lines to divide the circles and then cut
them out, or you can draw the lines for them to cut
along. The blank circular outline will be the pan to
fill. Depending on the age and understanding of
the children, this is a good time to discuss the idea
of fractions as parts of a whole as well as to review
fractional notation, pointing out that 1/2 means they

have one piece of a cake (or pizza) cut into two
equal pieces, 1/4 means one piece of a cake cut into
four equal pieces, and so on.

3. To play the first game, each child in the group gets
an empty pan (paper circle). All of the fractional
wedges go into a draw pile.

4. The children take turns rolling the die and taking
or returning the fractional wedge that the die indi-
cates, as shown in the box on the activity sheet (page
63). Each child tries to fill his or her cake exactly
using the wedges, with no wedges left over.

☞A more professional product could be
obtained by color copying a large photo-
graph of a cake or pizza from an ad or a
package label, writing the fractions on in
black marker, laminating, and cutting up
as necessary.

Another twist: Let each child decorate
a pizza or cake as he or she chooses, then
laminate the circle and cut out the frac-
tional pieces.

☞The idea of the activity is to get children
thinking and talking about equivalent
fractions: what pieces are the same. If
they have trouble seeing if the pieces
they have make a whole or not, it might
be helpful to group pieces together. For
example, two one-quarter pieces should
be put side by side to help them see that
this is half the pizza, or two sixths put
next to a third with the question “Do
you think these two sixths are the same
as the one third?” and then “How much
of the cake do all of these cover so far?”
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☞

Procedure 2: Servings
1. For the second game, each child starts with a com-

bination of pieces that make a whole cake (a full
pan). The kids can continue from the previous
game, after everyone has filled his or her cake pan,
or they can take turns drawing wedges until each
has a full cake before starting the second game. Pull
all half wedges out of the game completely.

2. Have one player in each group roll one die to deter-
mine whether the goal of the game will be to split
the cakes into three servings or four servings. A
roll of 3 or less is 3 servings; a roll of 4 or more is 4.
The object of the game will be for the children to
split their cakes in some way to serve three people
or four people equally.

3. The children take turns rolling the die. They then
exchange one wedge of their own for a wedge from
the draw pile that matches the roll of the die. The
rolls are worth the same as in the box on page 63,
except a roll of 2 is also a wild card roll, instead of
representing a half piece. A player can also choose
to refuse a roll. The wild card rolls (1 or 2) mean
the player can pick up or return a piece of his or
her choice with no trade.

4. Play continues until one person splits his or her
cake into the servings specified. For example, if the
goal is to serve four people, three one-quarter
wedges and two one-eighths would work.

The use of equivalent fractions in mathematics is
meant to provide the most useful and simple rep-
resentation of a particular fraction for a particular
context. This game provides a context for such
discussions. However, if the discussion evolves
into a related discussion or investigation as play
progresses, continue in the new direction rather
than forcing a particular game to be played.

Extension Activity
Add a new cake cut up into 12 pieces to the
choices. Use a roll of 1 to represent one of
these new pieces, called twelfths. This will
make both games harder!

Filling up
the cake!

Suggestions
• For those children just beginning to learn fractional

notation, you or the children could write on each piece
with black marker the fraction each piece represents.

• Children often spontaneously invent games of their
own. Encourage them!

Assessment

Informally observe whether the children play the game
successfully.
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Party Fractions Activity Sheet

This activity includes two different games for you and
your friends to play. With the help of an adult, you cre-
ate cakes (or pizzas) with pieces of all different sizes.
Can you put the cake back together using the pieces?

Filling the Cake
1. First get into a group with three other people. As a

group, you will decorate ten circles to look like
birthday cakes (or pizzas), using markers.

2. On your own or with help, divide the cakes into
pieces (called wedges) of different sizes by drawing
lines from the center.

• Divide two cakes each into two equal
wedges, or halves.

• Divide two cakes each into three equal
wedges, or thirds.

• Divide two cakes each into four equal
wedges, or quarters.

• Divide two cakes each into six equal
wedges, or sixths.

• Divide the last cakes into eight equal
wedges, or eighths.

3. After dividing the cakes, cut out all of the wedges
and put them into a draw pile. Each of you then
takes a cake pan (a blank circle), and you’re ready
to start the first game.

4. To play the first game, you take turns rolling the
die. Each number on the die represents a wedge
from the draw pile, as shown below. Take the wedge
from the draw pile that matches your roll and place
it on your cake pan. The goal is to fill up your cake
pan exactly. If you roll a 1, you can take any wedge
or return one of your wedges, but you can’t trade
your wedge with one in the pile.

Folding the paper is a simple way to
create the lines that are straight and
divide the cake equally.

Roll of 1: wild card—choose any wedge or return
a wedge of your choice to the pile

Roll of 2: a half

Roll of 3: a third

Roll of 4: a quarter

Roll of 5: an eighth

Roll of 6: a sixth

11a
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Party Fractions Activity Sheet

Servings
1. For the second game, you start with a combination

of wedges that makes a full cake. If you play this
right after the first game, after everyone has
completly covered a whole cake pan, you will each
have a full cake to start. Otherwise, everyone can
take turns choosing one wedge at a time until
everyone’s cake is full. Set the half pieces aside. You
won’t need them for this game.

2. One player now rolls the die once to determine how
many people each of you needs to serve with your
cake, either three or four people. A roll of 3 or less
is 3 servings; a roll of 4 or more is 4. If the player
rolls a 4 or more, for example, then everyone’s goal
is to divide his or her cake in a way that will serve
four people equally.

3. After rolling to decide the goal for your group,
take turns rolling the die and trading a particu-
lar wedge on your cake for the one in the center
pile that matches your roll. You may also choose
to refuse a roll completely. Note: For this game,
because you aren’t using the half wedges, a roll
of 1 or 2 is a wild card roll. If you roll a wild
card (a roll of 1 or 2) then you can pick up any
wedge or return any wedge, but you can’t trade.
The winner is the first person who can split his
or her cake into the servings specified the fastest.
For example, to serve four people, three one-
quarter wedges and two one-eighths would work.

4. Enjoy making up your own fraction games, too!
Add more wedges to the game as needed.

You don’t have to serve four people with four wedges. You
can give one person two (or more) wedges that equal one
large wedge. If you give three people each a quarter of
your cake, then what two wedges could you give to the
fourth person? In other words, if you filled up three quarters
of your cake, what two wedges could you use to fill up
that last quarter?

2

1 3

4

11b
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Suncatcher Reflections

SUNCATCHER
REFLECTIONS
The BIG Idea
Reflections and rotations make great patterns—and there’s
even a connection to fractions and measuring angles.

Content Areas in This Activity
• Division as partitioning
• Division, single-digit divisor (optional)
• Division with calculator (optional)
• Angle measurement
• Circle measurement
• Geometric patterning
• Transformational geometry (including

rotational symmetry)

Process Skills Used in This Activity
• Hypothesizing
• Creativity
• Aesthetics of mathematics

Prerequisite Knowledge and Skills
Division, single digit (helpful)

Age Appropriateness
If you precut the circles and wedges, young children will
be able to create the designs. Adjust the discussion of
mathematics to the age and understanding of the children.

For example, you could limit your discussion to just the
idea of a reflection (flip) and omit discussion of measure-
ment for six- and seven-year-olds. All children will be able
to enjoy the creation of beautiful symmetrical patterns.

Mathematical Idea
Mathematical ideas are sometimes studied in isolation, but
often the connections between areas, such as measure-
ment, geometry, patterning, and algebra, are most
interesting and important. In this activity, children explore
the mathematical basis of a kaleidoscope, making acetate
suncatchers in the process.

First they will use mirrors to explore rotational pat-
terns. The key idea to discover is that when the mirrors
are held at an angle that divides exactly into 360 degrees
an even number of times, the pie-shaped pattern will re-
flect in each mirror and make an exact and complete
rotational pattern. For example, 360° ÷ 6 pieces = 60° and
6 is an even number of pattern pieces. Six pieces of 60
degrees each will exactly rotate around the circle. If the
number of pieces is not even (divisible by two), the pat-
tern cannot alternate (reflect) with each rotation. Other
angles that divide into 360 degrees are 90 degrees and 45
degrees. If you hold two mirrors at any of these angles on
top of a pattern, the pattern will repeat itself in the mir-
rors in a full circle. Try it!

Activity

12
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Angle: The amount of rotation needed to get from one
direction to another is an angle. Often we speak of the
angle between two lines: This is the amount of rotation
needed to get from one line to the other. It is often
measured in degrees (see also degree).

Degree: A unit for measuring rotation, abbreviated as °, is
a degree. A complete rotation is said to be 360 degrees.
This comes from the historical thought that it took 360
days for the Earth to revolve once around the sun. Two
lines at right angles form angles of 1/4 rotation, which is
90 degrees (that is, 360 divided by 4).

Divisibility: The divisibility of a number describes whether
any numbers can be divided into it with no remainder.
For example, 10, 15, and 20 are divisible by 5. The
divisibility rule for 5 is that 5 will divide evenly (with no
remainder) into numbers that end in 5 or 0.

Factors: Numbers that divide evenly (with no remainder)
into a number are factors of that number (see also divisibility).

Fractions: Fractions are pieces into which a whole can be
divided. If A has 1/2 of a pizza and B has 1/3 of the pizza,
then C has the remaining 1/6; these three fractions make
up the whole.

Measurement: A way of counting or quantifying distance
or area, using a particular unit, is measurement. In this
activity, children may use a protractor to measure degrees
in an angle.

Patterns: Sets of items, such as numbers or shapes, that are
continued in a predictable way are called patterns.
Patterns created using shapes are called geometric
patterns. Linear patterns change by the same amount each
time: for example, 2, 4, 6, 8, . . . (changing by 2) or red,

blue, red, blue. Nonlinear patterns change by a different
amount each time: for example, 2, 4, 7, 11, 16, . . .
(changing by 2, then 3, then 4, then 5, and so on) or red,
blue, red, blue, blue, red, blue, blue, blue, . . . Rotational
patterns are patterns created by rotating a shape or image.
For example, a minute hand traces a rotational pattern
around a clock face.

Reflection: Literally, a reflection is what you see when you
look in a mirror, or the “mirror image” of something. In
transformational geometry, reflection involves flipping
an object, often to see if it looks the same (or the opposite)
when flipped.

Rotation: When you move (or turn) an object in a circular
path around a point called the center, you are rotating
the object.

Rotational symmetry: Rotational symmetry describes a
design that repeats itself as we trace out the rotation and
is the same every fixed amount.

Symmetrical: A design with parts that are the same on both
sides is a symmetrical design: For example, by reflecting,
we can create a design with two reflected halves.

Transformational geometry: The geometry of moving
shapes around is transformational. For example, transla-
tions (slides), rotations (turns), and reflections (flips) are
movements that are possible in transformational geometry.

Translation: Also known as sliding, translation means
moving an object from one position to another in a
straight-line movement.

Wedge: A pie-shaped fraction of a circle is called a wedge.

HELPFUL TERMS
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Suncatcher Reflections:
Making It Work

Some commercial kaleidoscopes have ten pieces around
each rotation, an angle of 360 degrees divided by 10 de-
grees, or 36 degrees, but this requires too much measuring
precision for this activity.

This activity involves concepts such as division, mea-
surement of angles, fractions, reflections, rotations, rota-
tional symmetry, and patterning—all of the ideas reinforce
one another.

Objectives
• Children will investigate the mathematical ideas

that make kaleidoscopes work.

• Children will create interesting rotational patterns
with reflections.

• Children will connect ideas of angle measurement,
fractions, and division (optional).

Materials

✔ two small rectangular mirrors for each child

✔ scissors for each child

✔ color magazine or book picture for each child

✔ 8 1/2" x 11" sheet of clear acetate transparency or
tracing paper for each child

✔ water-soluble transparency pens or colored pencils
(if using tracing paper)

✔ 8 1/2" x 11" black construction paper for each frame

✔ glue for each child or small group

✔ hole punch

✔ suction cup and string for each suncatcher

✔ photocopy of the Suncatcher Reflections Activity
Sheet (on pages 71–72) for each child

Preparation

• Using the templates on page 68, cut the circle and
three sizes of wedges out of the acetate or tracing
paper for each child. The acetate is easier to use

Seeing rotated patterns in a pair of mirrors.
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and produces a nicer final product than the tracing
paper, although both will work for this activity.

• If you plan to mount the finished designs, cut a
frame out of black construction paper to fit the size
of each circle for each child. The hole in the frame
needs to be slightly smaller than the circle so the
frame will overlap.

Procedure
1. Have the children spend some time investigating

angles with pairs of mirrors on top of a color pic-
ture. Young children will enjoy just looking at the
different images that appear in the mirrors as they
change the angles. With older children, this is an
opportunity to discuss the basics of angles and
transformational geometry, such as degrees, rota-
tion, rotational symmetry, rotational patterns, and
reflection. The children must hold the mirrors up-
right, touching on one edge, rotating one mirror to
change the angle between them.

2. Discuss the fact that certain angles produce clear
images in the mirrors, but as they rotate the mir-
rors away from these angles, they get a blur in the
back of the pattern. With older children, you can
discuss which angles produce a clear image (those
that divide into 360 with an even result) and those
that don’t. With younger children, just have fun
looking at the different angles.

3. Pass out the circles and wedges and explain that
the wedges have angles that will work to create a
rotational pattern. That is, the wedge angles match
some of the mirror angles that worked to get a clear
image. You might show them with four 90-degree
wedges how four of them fit exactly on the circle,
then repeat this with six 60-degree wedges and eight
45-degree wedges.

4. Next explain to the children that they are going to
create a suncatcher using the circles and a wedge.
Have them choose the wedge they wish to use and
place it anywhere on their color pictures. The
smaller-angled wedges will make more complicated
designs.

Templates for acetate circle and wedges (enlarge as desired).

45°

90°

60°
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☞

5. Using the transparency pens (with acetate) or the
colored pencils (with tracing paper), each child
traces a portion of a picture onto the wedge, making
sure to go all the way to edges of the wedge. This
wedge will be the pattern piece. Emphasize that they
are not trying to trace a complete picture inside the
wedge. That’s why tracing the pattern is better than
drawing on the wedge freehand. Freehand draw-
ings, such as a heart or flower in the center, are
often symmetrical and do not go to the edge, which
makes tracing the wedge image repeatedly on the
circle much harder to do. The idea of a reflected
image also gets lost because a symmetrical image
looks the same reflected.

Examining a commercial kaleidoscope or
two can be an interesting way to enhance
the investigation of angles, wedges, and
rotational patterns.

Tracing the pattern wedge.

6. After they have all finished tracing onto their pat-
tern pieces, have the children place their mirrors
along each straight edge of their pattern pieces. The
pattern each child sees in the mirrors is what he or
she will end up tracing onto the circle.

7. Have the children begin by placing the circle on
the pattern piece so that the rounded edges line up
and the tip of the wedge is in the center of the circle,
then trace the design onto the circle.

8. Next the children will reflect the pattern piece (flip
it over), and place it under the circle so that one
edge lines up with the edge of what they just traced
(that is, so that the wedge designs are right next to
each other without overlapping).

9. They continue tracing their design, flipping the
pattern piece each time, until they’ve completed the
circle. The pieces should fill the space reasonably well.

☞A key point in the creation of the sun-
catcher is to reflect the pattern after
each tracing. Remind children that this
is what the mirror does. They can check
their emerging designs with the mirrors
held over the initial wedge every so
often to ensure that what they are
creating is the same pattern they see
in the mirrors.
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10. After completing their designs, the children color
them in. If you wish, you can provide a black frame
and help them, if necessary, to glue around the
edge of the suncatcher and attach it to the frame.

11. Help them punch a hole in each suncatcher or
frame, loop the string through and tie it, then wrap
it around the suction cup (or around the hook on
the suction cup, if it has one). Now the suncatchers
are ready to hang on any window!

Suggestions
This activity can be a pleasing exercise in creating an in-
teresting kaleidoscopelike pattern, or it can be a more
detailed lesson in any or all of the following mathematical
concepts: angle measurement, division, fractions, and
transformational geometry. All of these ideas and their
interconnections are present in the activity, and it is up to
you how much discussion of these topics is desirable. I
have used this activity embedded in a fourth-grade lesson
on transformational geometry and made connections to
division and angular measurement. I have used it with both
younger and older children as a pleasurable introduction
to the mathematics (not necessarily the terminology) gov-
erning kaleidoscopes, which is the topic of the next activity
(page 73). Encourage the children to enjoy the patterns,
to notice and discuss the mathematics, and to discover their
beauty, all as appropriate to the interests of the children.

Assessment

• The finished suncatcher should show an under-
standing of the role of the mirror (that is, the
children flip the wedge as they trace to mimic the
action of the mirror).

• If you discuss deeper mathematical ideas in con-
junction with this activity, such as the idea that six
pieces in a pattern must mean each piece has a 60-
degree angle because 360 divided by 6 is 60, then
you can determine understanding by asking chil-
dren to explain these concepts.

Extension Activity
Have the kids cut out their own circles and
wedges, using a protractor to measure the
angles and experimenting with which wedges
will work and why. They could also work on
a design with a smaller wedge angle, such
as 36 degrees, but that will require patience
and precision.
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In this activity, you get to create a suncatcher based on
the reflections you see in a mirror!

1. Using two small mirrors, hold them together in a
wedge shape over a color picture. Look into the
mirrors and explore what happens as you change
the angle between them.

Suncatcher Reflections
Activity Sheet

A rotational pattern is a pattern you create
by rotating something, such as a shape,
around in a circle. For example, a minute
hand traces a rotational pattern around a
clock face.A top-down view of how to hold the

mirrors together at an angle on top
of your picture.

2. At certain angles, you will see a clear set of images.
For example, at 90 degrees you should see four
images reflected in the mirrors as you look into
them. (Ask an adult for help if you’re not sure which
angle is a 90-degree angle, or hold your two mir-
rors along the corner of a book.) Some angles work
to give a clear pattern, and as you rotate away from
these angles you will get a blur in the back of the
pattern. Try it! Discuss with others how to find the
angles that work.

3. In this activity you will make a suncatcher based
on one of the angles that makes a complete rota-
tional pattern. These are the angles that created a
clear image, without any blurring, when you looked
into the mirrors.

4. Choose a wedge to be your pattern piece.

Rotate these
mirrors in and
out to change
the angle.

Look in here.
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5. Place the wedge on a color picture. Using a colored
pencil (if the wedge is made of tracing paper) or a
transparency pen (if the wedge is made out of trans-
parency paper), trace a part of the outline of the
picture onto the wedge pattern piece. It is impor-
tant that you trace something rather than draw it,
so the design goes right to the edges of the wedge.
For example, you might have something like this:

8. Now, what do you have to do before you can trace
the next section of the rotated pattern? Remem-
ber what the mirror does! It reflects, so you want
to reflect the pattern piece (flip it over) before
lining it up with what you just traced and tracing
again. Hold a mirror on the edge of the wedge to
check your design.

9. Continue tracing all around until the design is
complete.

10. You can now color your suncatcher brightly. Color
each part to make a symmetrical design (a design
with identical elements) for the best effect.

11. You can mount your suncatcher by gluing it on a
black construction-paper frame. Punch a hole for
string, wrap the string around a suction cup, and
hang it in the window.

Suncatcher Reflections
Activity Sheet

A simple pattern piece example.

6. Hold the mirrors on the straight edges of the wedge
pattern piece and look in. The pattern you see is
what you are going to create on your large circle.
The large circle will become your finished
suncatcher.

7. First place the circle on the pattern piece and trace
the pattern piece design on the circle as is, being
careful to line up the center and the rounded edges.

A finished sun-
catcher and the
pattern piece
used to create it.

5
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KALEIDOSCOPE
Activity

13
The BIG Idea
Lots of great toys use mathematics, such as the kaleido-
scope. You can build your own!

Content Areas in This Activity
• Angle measurement (optional)
• Circle measurement (optional)
• Geometric patterning
• Transformational geometry (optional)

Process Skills Used in This Activity
• Creativity
• Aesthetics of mathematics

Prerequisite Knowledge and Skills
Activity 12 (helpful)

Age Appropriateness
All children will be able to create the kaleidoscope but
will need the holes prepunched into the can as well as
either the tubes cut shorter for the purse mirrors or the
custom mirrors available and ready to use.

Mathematical Idea
This activity can be done after the previous one (on page
65) or on its own. The kaleidoscope itself was invented
by an Englishman named David Brewster early in the twen-
tieth century and has remained popular ever since. The
mathematics behind the kaleidoscope are examined in the
previous activity, Suncatcher Reflections.

After doing the previous activity, it’s easier to actually
calculate the angle of the mirrors when we look into com-
mercial kaleidoscopes. All we have to do is count the
number of images we see going
around the circle in each section.
For example, if we see eighths in
the design, we know the mirror
angle is 360 ÷ 8 or 45 degrees. Sixty
degrees is a popular angle for ka-
leidoscopes, and it is the one we
will use here. If we create an equi-
lateral triangle out of three mirrors
placed as a triangular prism with
the mirrors facing in, we know the
angles between the mirrors are 60
degrees because equilateral tri-
angles have 60-degree angles. It is
this construction of mirrors that
makes the kaleidoscope work.

Constructing a homemade
kaleidoscope is easy!
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HELPFUL TERMS
Angle: The amount of rotation needed to get from one

direction to another is an angle. Often we speak of the
angle between two lines: This is the amount of rotation
needed to get from one line to the other. It is often
measured in degrees (see also degree).

Degree: A unit for measuring rotation, abbreviated as °, is a
degree. A complete rotation is said to be 360 degrees.
This comes from the historical thought that it took 360
days for the Earth to revolve once around the sun. Two
lines at right angles form angles of 1/4 rotation, which is
90 degrees (that is, 360 divided by 4).

Divisibility: The divisibility of a number describes whether
any numbers can be divided into it with no remainder.
For example, 10, 15, and 20 are divisible by 5. The
divisibility rule for 5 is that 5 will divide evenly (with no
remainder) into numbers that end in 5 or 0.

Factors: Numbers that divide evenly (with no remainder)
into a number are factors of that number (see also
divisibility).

Fractions: Fractions are pieces into which a whole can be
divided. If A has 1/2 of a pizza and B has 1/3 of the pizza,
then C has the remaining 1/6; these three fractions make
up the whole.

Measurement: A way of counting or quantifying distance
or area, using a particular unit, is measurement. In this
activity, children may use a protractor to measure degrees
in an angle.

Patterns: Sets of items, such as numbers or shapes, that are
continued in a predictable way are called patterns.
Patterns created using shapes are called geometric
patterns. Linear patterns change by the same amount each

time: for example, 2, 4, 6, 8, . . . (changing by 2) or red,
blue, red, blue. Nonlinear patterns change by a different
amount each time: for example, 2, 4, 7, 11, 16, . . .
(changing by 2, then 3, then 4, then 5, and so on) or red,
blue, red, blue, blue, red, blue, blue, blue, . . . Rotational
patterns are patterns created by rotating a shape or image.
For example, a minute hand traces a rotational pattern
around a clock face.

Reflection: Literally, a reflection is what you see when you
look in a mirror, or the “mirror image” of something. In
transformational geometry, reflection involves flipping
an object, often to see if it looks the same (or the opposite)
when flipped.

Rotation: When you move (or turn) an object in a circular
path around a point called the center, you are rotating
the object.

Rotational symmetry: Rotational symmetry describes a
design that repeats itself as we trace out the rotation and
is the same every fixed amount.

Symmetrical: A design with parts that are the same on both
sides is a symmetrical design: For example, by reflecting,
we can create a design with two identical halves.

Transformational geometry: The geometry of moving
shapes around is transformational. For example, transla-
tions (slides), rotations (turns), and reflections (flips) are
movements that are possible in transformational geometry.

Translation: Also known as sliding, translation means
moving an object from one position to another in a
straight-line movement.
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Objectives
• Children will create a mathematical object using

the mathematical ideas from activity 12 (on page
65).

• Children will enjoy understanding and creating a
mathematical toy.

Materials

✔ potato chip can with clear lid, 9" (23 cm) tall, for
each child

✔ hammer

✔ nail (reasonably large)

✔ about 1/4 cup clear beads for each child

✔ 4" x 4" (10 cm x 10 cm) piece of acetate transpar-
ency or other transparent plastic for each child

✔ water-soluble transparency pen for each child

✔ transparent tape

✔ masking tape

✔ scissors for each child

✔ three rectangular purse mirrors or custom-cut
mirrored glass to fit in can for each child (see Prepa-
ration for more information on custom-cut glass)

✔ half-sheet of tissue for each child

✔ photocopy of Kaleidoscope Activity Sheet (on page
78) for each child

Kaleidoscope: Making It Work

No two kaleidoscopes are ever alike! Be sure to look at everyone’s.

Preparation
• Punch a hole, 1/8 inch to 1/4 inch (3 mm to 6 mm), in

the center of the metal end of each chip can with a
hammer and nail. This will be the hole the chil-
dren will look through into the kaleidoscope.

• The directions that follow and on the activity sheet
have the children cutting their own acetate circles,
but you can precut these for younger children, fol-
lowing the directions.

• If you use purse mirrors, you will need to cut off
the can at the open end to just over 1/2 inch (1.5 cm)
longer than the mirrors lengthwise inside the can.

• If you decide to use custom-cut glass (which will
give you a superior product), you will need to have
each set of three pieces cut at a glass store. The size
is about 2 2/5 inches by 8 inches (5.5 cm by 20 cm),
but it depends on the thickness of the glass, so bring
the can along.
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Procedure

1. First have the children form a triangle of the mir-
rors, with the reflective side facing in. Help them
tape the mirrors together using masking tape. En-
courage them to look down the tube of mirrors,
pointing them at pictures or objects and examin-
ing the reflections. With older children, you can
use this as a time to review the concepts from ac-
tivity 12. Ask what angles are in the triangle and
how many patterns they can see. Can they draw a
connection between the number of patterns and the
angles? They should see a pattern of six triangles
because the triangle is equilateral and therefore each
angle is 60 degrees. Have them try holding a finger
at the end of the tube while looking through the tube.

2. Next they slide the mirrors into the chip can all the
way down to the metal end. They may need to stuff
some tissue between mirrors and can to keep the
mirrors from rattling. Looking down into the tube,
the mirror triangle should look like the illustration
on page 78 of the activity sheet.

3. Next have each child place the chip can on the trans-
parency and trace a circle around the end of the
can. The children will cut the circles out about 1/8

inch (3 mm) smaller than the circle line so that it
will fit inside the can. They need to leave tabs on
the circle for taping, as shown in the illustration on
page 78 of the activity sheet. They can draw these
tabs on before cutting or simply cut the circle out,
cutting the tabs as they go. Make sure each child
sees the illustration and understands the need to
leave the tabs and to cut the circle slightly smaller
before he or she begins cutting.

4. After cutting out their circles, the children should
fold the tabs and push the circle into the can, on
top of the mirrors, with the tabs sticking up. They
should adjust the circle as necessary, perhaps cut-
ting it even smaller if it doesn’t fit. They then tape
the tabs to the inside walls of the can with trans-
parent tape.

5. Next the children put the beads in the can, on top
of the acetate circle, and attach the lid. The beads
will rest on top of the acetate, which will keep them
from falling into the mirrored part of the kaleido-
scope. If you used purse mirrors, and had to cut
the can short, you will need to tape on the lid.

Layout of the kaleidoscope.

Metal end of can with
viewing hole punched
in and mirrors inside

Triangular prism of mirrors inside can

Acetate circle
to keep beads
in the end

Area for beads inside

Lid of can
goes here

☞The beads can be changed any time. Ex-
periment with combinations of beads in
many colors or with other colorful objects!
You will always want a fair amount of beads
as only the middle of the triangular tube
will be seen at any one time, so you don’t
want most of the beads sliding out of sight.
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Suggestions

• Encourage children to recognize the six triangles
together with the 60-degree angles in the pattern
as they look into the kaleidoscope.

• This activity can be done for the pure pleasure of
creating the kaleidoscope, or with a review of as
much of the mathematics from the previous inves-
tigation as is desired.

• It is not absolutely necessary to do the previous
activity before creating the kaleidoscope, but it may
make it more mathematically interesting and easier
to understand. Be sure to identify the sixths going
around each rotational section as you look into the
can. Comparing the angles seen in other commer-
cially available kaleidoscopes can be interesting too.
Remember the angle is the number of rotational
sections seen divided into 360.

Assessment

The finished product should speak for itself!

Extension Activity
The children could decorate the outside of
their tubes with a tessellation design (see
activity 8, page 42). Challenge them to figure
out what size initial square they must choose
so the shape exactly lines up with itself going
around the can. The key is that the side length
of the initial tessellation square must be an
exact fraction of the circumference of the
can for the tessellation pattern to meet up
with itself going around the can.
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In this activity, you will create your very own kaleido-
scope!

1. First tape your three mirrors together, with the mir-
rors facing inward. Have fun looking through the
triangular tube and recognizing the patterns. How
many patterns do you see? What angle is in the
triangle? What is the connection between the num-
ber of patterns and the triangle angle?

2. Now slide your mirrors down inside the chip can,
stuffing with a bit of tissue if necessary between
the mirrors and the can so the mirrors won’t rattle.
If you look into the can, it should look like the
illustration below.

at right. You can draw
these on first, or just
be sure to leave four
tabs as you cut. Fold
the tabs up and test
that the circle will
slide neatly into the
can, with the tabs
folded up.

Kaleidoscope Activity Sheet

You can change your beads at any time, and
even use other colorful objects. Experiment
with combinations! Elastic, string, paper clips,
or a penny might add to your designs.

3. Now trace a circle around the end of the can onto
the transparency. You will cut out this circle about
1/8 inch (3 mm) smaller than your line (so it will fit
in the can), but before you cut, be sure to leave
four tabs on the circle as shown in the illustration

Looking down
into the chip can.

The transparency circle
with four tabs to fold up
and tape to the inside of
the can.

4. Slide the circle into the can, down on top of the
mirrors, with the tabs folded up. Tape the tabs to
the inside of the can using transparent tape. This
circle keeps the beads from falling into the mirrors.

5. Now all you have to do is fill the end of the can
with beads and attach the lid. If your can is cut off
at the end, you will need to tape on the lid. Look
through the hole your teacher has punched in the
metal end. Be sure to look through everyone’s ka-
leidoscope. No two are ever the same!

1

2

3

4

5

13
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Crawling around the Moebius Strip

CRAWLING AROUND

THE MOEBIUS STRIP
Activity

14

The BIG Idea
Turning flat objects into three-dimensional ones can give
unexpected results. Just ask a topologist!

Content Areas in This Activity
Three-dimensional visualization

Process Skills Used in This Activity
• Reasoning
• Hypothesizing
• Problem solving

Prerequisite Knowledge and Skills
None

Age Appropriateness
It is useful to precut the strips for younger children, but
other than that this challenge can be put to children of
even primary age. It is often not the oldest who thinks of
twisting the strip first! Younger children will need help
taping the strip in place. They also may have more trouble
making the lengthwise cuts for the extension activity.

Mathematical Idea
The branch of mathematics called topology is all about
shapes and surfaces and dimensions. It has been said that
a topologist is a mathematician who doesn’t know the dif-
ference between a doughnut and a cup. That is because
topologically, they are both equivalent. That means they
have the same number of surfaces and the same number
of holes. You can verify this with clay: You can mold a
doughnut into a cup without punching any new holes!

A Moebius strip (named after a German mathemati-
cian) is a two-dimensional object with a twist in the third
dimension. This twist gives the
paper some neat properties, as
this activity will demonstrate.
The paper now has only one
side! The trick to turning the
paper strip into a Moebius
band is to hold one end of the
strip in each hand, and then
turn one hand upside down
before joining the loop. This
will join one side of the paper
strip to the other. Experimenting with the Moebius strip.
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Crawling around the Moebius
Strip: Making It Work

HELPFUL TERMS

☞

Objectives

Children will gain initial experience with the intrigue of
topology.

Materials

✔ long narrow strip of paper, at least 2" x 2' (5 cm x
60 cm), for each child

✔ transparent tape for each child

✔ scissors for each child (optional)

✔ two colors of markers for each child

✔ small plastic turtle, bug, or other animal (optional)

✔ photocopy of Crawling around the Moebius Strip
Activity Sheet (on page 83) for each child

Preparation

Cut the paper strips in advance.

Procedure
1. Most children will naturally pick up the strip off

the table and begin to play with it. If they do not,
you could model this by picking it up and examin-
ing it, asking, “Now, how could we get the turtle to
the other side without going over the edge?” If you
don’t use a turtle or other toy animal, you could
use an eraser or simply challenge the kids to draw
a line on both sides of the strip without lifting up
the marker, as described on the activity sheet.

Theoretically, we can do the same thing by construct-
ing a three-dimensional bottle and twisting it into the
fourth dimension so that it has no inside or outside.
This object is called a Klein bottle, after another math-
ematician. It might be fun and interesting to search
the web using the key phrase “Klein bottle” to show
kids images of this fascinating object.

Edge: An edge is the straight line that bounds a closed shape.
For flat shapes, we usually call these sides, but in three
dimensions we call them edges. For example, a cube has 12
edges—think of it as the number of toothpicks it would
take to construct it.

Moebius strip: A Moebius strip is a strip of paper (a two-
dimensional object) with a twist in the third dimension that
enables the back to meet the front—it has just one side.

Three dimensional: A three-dimensional object isn’t flat but
uses up space (volume). For example, a square is two
dimensional but a cube is three dimensional.

Topology: A branch of mathematics that deals with surfaces
and holes in the surfaces is called topology. Objects such as
a doughnut and a cup are considered topologically similar
because they have the same number of holes.

Two dimensional: A flat shape (you could draw it on a piece
of paper), or a shape with no thickness, is two dimensional.
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Suggestions

The first stab at a solution for many will be bending one
end of the strip over and sticking it down in the middle of
the strip, as the child is doing in the photograph below.
This is on the right track, but the strip would have to be
continuously rearranged to get into the middle of this loop.
You might prompt with “That’s the right idea, but how
can we change it so the bug can get into the loop? The
shape has to stay the same and still allow it to crawl
everywhere.”

Assessment

The children can self-assess the success of their strip by
testing it with the marker line. If it meets up with itself on
both sides of the strip, they have created a Moebius strip.

2. Encourage the children to play with the paper to
find a layout that the turtle (or bug, or whatever
small animal you choose) can fully traverse. The
turtle can only go over edges that are joined to the
strip (such as an edge taped to the strip), but not
over any sharp edges, such as the sides or the end if
it’s not joined to the strip. Have the children draw a
line behind the turtle with a marker. Ultimately, they
want to be able to draw the line behind the turtle
all around both sides of the strip to where the turtle
started without picking up the marker. So their first
line will extend the length of one side of the strip
only. Now, how to get the line to cross to the other
side is the challenge!

3. The trick is to hold one end of the paper in each
hand, and then flip one side upside down so the
side that has a marker line meets the blank side,
and tape it in place. Once the kids have figured it
out, they can test it by drawing all around it with
the other marker in a different color.

Encourage the children to pick up the strip
and play with it three dimensionally.

The untwisted loop. A half twist in the loop creates the
Moebius strip.
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Extension Activity
The extension of this activity is to predict
what would happen if we cut the strip along
the length, following the marker line down
the middle. Ask them to predict what they
think will happen, then pierce the strip and
cut along the line drawn down the length.
It’s important that they pierce the strip instead
of cutting from the edge. Folding the strip
is a good way to start the cut in the middle
of the band.

Have them test their new strip with the
marker, drawing along the middle of the strip
again. Ask what they think will happen if
they cut it again, following the new line down
the middle. Will the result be the same? Try
it—the result may surprise you. But that’s
topology! Note: You will need a reasonably
wide initial strip to be able to cut it twice
lengthwise, and this part will be harder for
younger children.



83

Crawling around the Moebius Strip

Crawling around the Moebius
Strip Activity Sheet

This will get you all turned around! Can you draw a
line on both sides of the paper strip without lifting your
marker?

1. Start with a strip of paper and a marker. Your goal
is to draw a line around the strip without lifting
your marker and without going over a sharp edge.
In other words, you can go over an edge that is
joined to another, but not over the edge from one
side to the other.

Imagine a turtle crawling along the strip, leaving a line behind it.

2. Another rule is that you must be able to draw the
line all the way around without changing the shape
of the strip. You can play with the shape to find one
that works now, but once you start drawing the line,
you can’t keep changing the shape as you draw. The
line must continue until you end up back where
you started.

It might help to imagine a turtle or bug
walking along your strip, leaving a line
behind it, as shown in the picture below.
Because the turtle can’t crawl over any
sharp edges, it can’t get to the other side.
The turtle can’t fly either!

3. Once you have found out what to do, you can tape
your shape in place and test it with a new color of
marker. You’ve figured it out if you are able to go
along both sides and end up where you started with-
out lifting the marker.

Pick up your paper from the
table and work with it three
dimensionally.

1

2

3

14
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WHAT COLOR?
Activity

15

The BIG Idea
Visualizing the three-dimensional shape from the two-
dimensional outside surface can be a challenge!

Content Areas in This Activity
• Geometric patterning
• Three-dimensional visualization
• Nets
• Geometric terminology (optional)

Process Skills Used in This Activity
• Reasoning
• Hypothesizing (optional)
• Problem solving

Prerequisite Knowledge and Skills
Nets as surface area (helpful)

Age Appropriateness
This activity can be modified to fit various ages. Coloring
simple diagrams, such as those in the illustration on the
activity sheet (page 89), will be possible for most chil-
dren, but creating the nets is harder. A systematic
investigation of the extension activity would be more ap-
propriate for slightly older children, such as nine- and
ten-year-olds.

Mathematical Idea
The flat piece of paper needed to form an object such as a
cube is called a net. For example, the net for a cube con-
sists of six squares, each joined on at least one edge. There
are many such arrangements that will fold up to form a
cube, and figuring out all of them—and how we know we
have all of them—is the extension problem for this activity.

The nets in the main part of this activity form a little
house, made from four wall squares, one floor square, two
roof squares, and two roof (equilateral) triangles. The four
roof parts are to be one color, the rest another. Figuring
out what to color each part on the flat net is part of the
challenge of this activity.

There are two important mathematical skills at work
here. The first is the idea that nets of shapes or polygons
will sometimes fold up to make specific closed objects,
such as a cube, or in this case a house. Depending on the
object, more than one arrangement may be possible. So
we have the spatial reasoning (that is,
three-dimensional visualization) skill
of seeing how the nets fold up with-
out actually folding them, and then the
hypothesizing skill of deducing whether
we have all possible arrangements of
pieces to make a given object. The
packaging industry makes use of these
skills, as do many other businesses. The paper house for

use in the activity.
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Area: Area is the number of 1 x 1 squares that it takes
to cover a surface. For example, the area of a 2-
inch by 3-inch rectangle is 6 square inches (that
is, 2 x 3 = 6); in other words, it takes six 1-inch by
1-inch squares to cover it.

Conservation of area: This term refers to the idea
that if you arrange sections of an area differently,
the total area (the sum of the areas of the pieces)
remains the same.

Edge: An edge is the straight line that bounds a
closed shape. For flat shapes, we usually call these
sides, but in three dimensions we call them edges.
For example, a cube has 12 edges—think of it as
the number of toothpicks it would take to con-
struct it.

Face: The flat outside surfaces of a three-dimensional
solid are faces. For example, a cube has six faces.

Hypothesize: Another name for hypothesize is
conjecture. It means to put forth an unproven
theory for testing.

Net: A layout of flat faces that fold up into a particular
three-dimensional object is called a net. For
example, you can arrange six squares into a
number of nets that will fold up to construct a
cube.

Proof: A mathematical proof is a sequence of logical
deductions to establish the truth of something new
from something we know. If the proof applies to
an idea that includes an infinite number of values,
then examples are not enough to prove something.
More recently, arguments that show an idea by
moving through the range of possibilities (say, with
a diagram on a computer) are being considered as
close to mathematical proofs, often dubbed
dynamic proofs.

Three dimensional: A three-dimensional object isn’t
flat but uses up space (volume). For example, a
square is two dimensional but a cube is three
dimensional.

Two dimensional: A flat shape (you could draw it
on a piece of paper), or a shape with no thickness,
is two dimensional.

HELPFUL TERMS



86

Chapter 15

What Color: Making It Work

Objectives
• Children will practice their three-dimensional vi-

sualization skills.

• Children will use problem-solving skills to investi-
gate nets.

Materials
✔ half a sheet of 8 1/2" x 11" red and half a sheet of

8 1/2" x 11" blue paper to create a model of the house

✔ red crayon for each child

✔ blue crayon for each child

✔ three to five sheets of 8 1/2" x 11" paper for each
child

✔ scissors for each child

✔ pencil for each child

✔ transparent tape

✔ photocopy of What Color? Activity Sheet (on pages
88–89) for each child

Preparation
Construct a model house out of paper, using red for the
roof and gables and blue for the walls and floor. You can
use one of the templates on page 89, color it, and fold it
up, or you can use different colors of construction paper.

Procedure

1. First show the kids the model house and explain
that the illustrations on their activity sheet (page
89) will fold up to make the house. Explain that
these are called nets.

2. Point out that the model house has red roof pieces,
blue walls, and a blue floor. Have the children color
in the nets to match the model. Tell them they need
to figure out which parts of the net will form the
roof and color those parts red. They color the walls
and floor blue.

Instead of using paper for your model
house, you could use red and blue blocks,
or plain wooden blocks that you paint.

☞

☞Most children will be able to see or
guess the colors of the nets on page 89,
but for those who have trouble with this
or other nets you create, it might help
to walk them through the model. Start
with a face the child can locate on both
the model and the net, then rotate the
model, asking, “Which part of the net
would be this next one?” Continue as
necessary, turning the model and com-
paring it to the net. The two triangles
must of course be red, but because
they are equilateral, it may be hard to
determine which edges are adjacent to
the roof parts and which to the walls.
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3. After they finish coloring in the nets, they can
check their work by cutting them out and folding
them up.

4. Then the children create their own nets, using the
pattern pieces on page 89 to trace onto paper. They
can test their nets, as above, by cutting them out
and folding them up.

5. The children can trade nets and see if their friends
can color in the correct parts blue or red.

Suggestions
• You can make this activity harder by creating some

nets with the right number of pieces that do not
fold up to the desired shape, mixing these in with
those that do. Ask the children to determine which
ones will work.

• This activity could be used in the context of a study
of nets and surface area. The children should no-
tice that the surface area stays the same for all
successful nets because the same pieces are used.

Assessment
Children should have an improved facility for identifying
correct nets after doing this activity.

Extension Activity
Challenge the children to find all possible
nets that will fold up to make a cube. Ask
them how they will know for sure when they
have found them all. It might help to have
six cut-out squares for each of them to work
with and move around. This activity is an
introduction to the nature of dynamic proof.
Using moving pieces may help show that
they have systematically considered all ar-
rangements. Starting with a cube net works
well because locating all nets even for a cube
that has all square faces can be quite chal-
lenging. If the nets are drawn flat on the
page, and we do not allow them to be moved
around or flipped over, there are eleven nets
that work. Finding all of them would be a chal-
lenging activity for a ten- or eleven-year-old.
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What Color? Activity Sheet

The little house above is painted outside in two colors
on your teacher’s model. The roof is red and all the other
five square surfaces including the bottom are blue. Can
you look at the patterns on page 2 of your activity sheet
and see the house? Can you create patterns like these
that will also fold up into a house?

1. First look at the patterns on the following page and
try to imagine them cut out and folded up to look
like the model house. These patterns are called nets.
Nets are two-dimensional versions of the outside
surfaces of three-dimensional shapes. They are what
a shape would look like unfolded. Your job is to
determine which parts of these nets should be red
(that is, which parts will fold up to be a part of the
roof) and which should be blue (that is, which will
fold up into the walls and floor).

2. When you think you’ve figured it out, you can color
in each part the right color. Check your work by
cutting out the shape and folding it up.

3. After you’ve figured out the right colors for the nets,
it’s time to create your own. Using the pattern pieces
below to trace onto paper, create as many nets as
you can that will fold up to make the house. Test
them by folding if you are not sure. Trade nets with
your friends, and have them try to color them in
without folding them up. See how many you can
find! Can you hypothesize how many there could be?

The house for this activity.

As you are working, you may want to
use the model of the house. Turn the
house in your hand and try to visualize
the flat pattern folding up to form a
shape like the model.

(continued on next page)

Pattern pieces for the net.

1

2

3

15a
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Two possible nets to fold up into the house.

What Color? Activity Sheet15b
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BALLOONS AND
DICE GAME

The BIG Idea
Mathematics gives lots of interesting and unexpected re-
sults in games. Probability . . . you just can’t be sure about it!

Content Areas in This Activity
• Addition, single digit
• Probability: sample space
• Probability: combinations

Process Skills Used in This Activity
• Hypothesizing
• Problem solving

Prerequisite Knowledge and Skills
None

Age Appropriateness
This is a great game for children who need practice in
single-digit addition, even without talking about the prob-
able outcomes. Playing it multiple times will show children
that some numbers are more likely than others. By about
age eight or nine, children will start to be able to under-
stand the idea of the possible combinations.

Mathematical Idea
Probability is an interesting and relatively new area of
mathematics that has influence over everything from the
outcomes of games to the insurance business. In the roll-
ing of a single die, each of the six numbers is equally likely,
but when the sum of two dice is considered, unexpected
things happen. The sum of two dice can range from 2 to
12 (so the probability of getting a 1 is zero). But some
sums seem to come up more often. For example, when
playing the game, children often notice that 7 comes up a
lot. The easiest way to understand the situation is to use
dice of two different colors, say red and white. A 7 results
from any of the following combinations: 1 on white and 6
on red; 2 on white and 5 on red; 3 on white and 4 on red;
4 on white and 3 on red; 5 on white and 2 on red; and 6
on white and 1 on red. There are six possibilities in all.
Other numbers have fewer combinations that yield their
sum. If you list out all the possibilities for each number,
you will find 36 possible rolls in all. (This is called the
sample space, by the way.) So the chances of getting a sum
of 7 are 6 out of 36, or 1/6. This is called the probability of
rolling a 7. If you calculate the probabilities of all 36 pos-
sible outcomes, you will find they add up to 1.

Activity

16
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HELPFUL TERMSThe game in this activity has children using pennies
(or game tokens) to represent balloons in a carnival game.
On a sheet of paper marked with a row of numbers, 1
through 12, they set out their “balloons” based on their
guess of which numbers will come up on the dice most
often. Each time a number is rolled, they get to pop a
balloon next to that number (that is, remove a penny from
that number). Winning the game to follow is most likely
if the balloons are clustered around the middle numbers,
much like the distribution of possible outcomes. But it’s
more fun to play before you know this!

Possible layouts for starting to play the game.

Probability: The branch of mathematics that has
to do with predicting the likelihood of events
is called probability. For example, when we roll
a die, the probability of rolling a 6 on a single
roll is 1/6. There are six possibilities, all equally
likely, so each will come up one sixth of the
time.

Sample space: In probability, the list of all
underlying possibilities, often with equal
probability of occurring, is called a sample space
(not to be confused with the outcomes of an
experiment).  For example, if we roll two dice,
and the outcome is the sum of the two faces,
then there are 36 possible points in the sample
space, all equally likely (with probability 1/36),
but there are 11 possible outcomes (the
numbers from 2 to 12). The probability of each
outcome is calculated with reference to the
sample space. For example, the probability of
a 4 is 3/36 = 1/12.

Sum: Sum is a name for the number you get when
you add two or more numbers. For example,
the sum of 2 + 5 + 1 is equal to 8.
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Objectives
Children will gain initial experience with probability out-
comes and sample space.

Materials
✔ 12 pennies or game chips per child

✔ pair of dice per pair or trio playing the game (each
die in a pair a different color)

✔ sheet of paper with the numbers 1 through 12 listed
(as on the activity sheet) for each child

✔ photocopy of the Balloons and Dice Game Activity
Sheet (on page 94) for each child

Preparation
Prepare each paper with the numbers 1 to 12 listed from left
to right in stalls, as shown on the activity sheet on page 94.

Procedure
1. Set the stage by telling the children they are at a fair

and are about to play the balloons and dice game.
Tell them to pretend that the pennies (or tokens)
are balloons. The sheet of paper is a wall with 12
different stalls, each marked 1 through 12.

2. Tell them that they can place the balloons under
any of the stalls. They can put as many balloons as
they like under a particular number, or no balloons
at all. At this point, you don’t need to explain any-
thing about probability or sample space or even the
fact that the numbers they choose represent guesses.
Let them play the game first to get a feel for it.

3. To play, each child takes a turn rolling the dice.
Whoever has a balloon beneath the number that
matches the sum of the dice gets to pop that bal-
loon (that is, remove it from the paper). The first
child to pop ten balloons (with two balloons left)
wins.

4. After all groups have played a few games, discuss
the fact that the balloons represent guesses of what
sums will appear. Ask them if some numbers came
up more often than others. Ask if they think they
can predict the best arrangement of balloons. Then
have them play the game again.

Balloon and Dice Game: Making It Work

☞
Allow as much experimentation as
possible before discussing the sample
space. Asking probing questions, such
as “How many different rolls would
have a sum of 7?” might start children
thinking about the solution. The
sample space shows all the possible
combinations of rolls, and this makes
clear what sums are the most likely.
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5. After the children have played a few games, and
when (and if) you feel they are ready, you can dis-
cuss the concept of sample space (unless the children
are young, in which case they can continue enjoy-
ing the game and learning about the basics of
probability just by observing and guessing num-
bers). The sample space for this game (that is, all
possible roll combinations) is detailed in the chart
below.

Extension Activity
Have the children track the long-term
outcomes of several games by making
a master chart and putting an “x” under
each number every time that sum
occurs. After a while, they will have a
graph of the most likely outcomes.
Challenge them to explain the shape
of the graph from the numbers on the
chart. (The shapes will get more similar
to the shape of the numbers on the
chart the more games they track.) What
does it say about probability?

Suggestions

• This game is a great environment for simply prac-
ticing single-digit addition, even without examining
probability.

• Children may notice right away that a sum of 1 is
impossible, or they may get stuck on this idea and
put a penny on 1, then find they can’t remove it
during the course of a game.

Assessment

• Children can apply the concept of sample space to
other contexts, and they show an understanding of
sample space in the numbers they choose in this
game.

• Assess young children based on their ability to to-
tal the sum of dice with each roll.

Sample Space

Possible Rolls: white die, red die
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Balloons and Dice Game
Activity Sheet

Imagine you are at the fair and want to play the following
game. You get to put 12 balloons anywhere you want on
the wall in the stalls marked 1 to 12, which are arranged
in a line. There are several stalls, so you can play against
several friends, each of you with your own row of bal-
loons. Here is one possible arrangement of 12 balloons:

1. Get into a group and each of you set your pennies
(or tokens) under any numbers you choose on your
sheet of paper. Remember, the pennies are your
balloons, and the numbers are the stalls.

2. Each player takes a turn rolling two dice. If you have
a balloon on the number that matches the sum of a
roll, you can pop one balloon there (remove a
penny). For example, if you roll a 3 and a 6, you
can pop one of the balloons in stall 9. (You may
only pop the balloon that is the sum of the two
dice.) The first player who pops 10 balloons (with
two balloons left) is the winner.

3. Play the game a few times to get the feel of it. Do
some numbers seem to come up more than others?
How can you predict the best initial arrangement
of balloons?

Each number is a stall, and each circle is a balloon.

16
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BALANCES AND

EQUATIONS
The BIG Idea
Equations . . . what a balancing act! The equals sign
means the balance is level.

Content Areas in This Activity
• Addition, single digit
• Subtraction, single digit
• Addition, double digit
• Multiplication, single digit (optional)
• Division, single-digit divisor (optional)

Process Skills Used in This Activity
• Reasoning
• Problem solving
• Concept of proof (optional)

Prerequisite Knowledge and Skills
• Addition, single digit
• Subtraction, single digit
• Multiplication, single digit (helpful)
• Division, single-digit divisor (helpful)

Age Appropriateness
Younger children may need help constructing the balance,
but all children will enjoy playing with it. Choose num-
bers based on the children’s numeracy understanding.

Mathematical Idea
The elementary curriculum topic of patterning and alge-
bra allows children to experience creating and generalizing
patterns of their own. These patterns can yield linear rela-
tionships, which require equation-solving skills.

Students are often afraid of solving equations. One of
the reasons for this fear may be an inadequate grasp of the
concrete idea behind the allowable operations. Indeed,
even secondary-level students may find the “what you do
to one side you must do to the other” rule confusing.

The balance is a concrete
metaphor for an equation. The
equals sign means the balance
must stay level. Children can
learn firsthand that to keep it
balanced you must always do
the same thing to both sides,
for example “remove one from
both sides” or “take half of
each side.” Playing with vari-
ous weights on a balance can
be a fun (and very useful) math-
ematical activity.

An easy-to-make balance.

Activity

17
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Balances and Equations:
Making It Work

HELPFUL TERMS

Objectives
Children will model linear equations concretely.

Materials
✔ two small yogurt cups for each pair

✔ 5' (1 1/2 m) twine for each pair

✔ scissors for each pair

✔ tape for each pair

✔ colorful markers for each pair (optional)

✔ paper towel tube for each pair

✔ several pennies for each pair

✔ hole punch to pass around (or pointed scissors to
use with adult help)

✔ two sheets of tissue for each pair

✔ balls for weights made from clay for each pair, for
example:

• yellow balls weighing one penny

• blue balls weighing 2 pennies

• red balls weighing 3 pennies

✔ photocopy of the Balances and Equations Activity
Sheet (pages 100–101) for each child

Preparation

• You may need to construct the balance in advance,
using the directions below. Alternatively, you could
use commercial balances instead of making them.

Algebra: Algebra refers to rules and language for
working with mathematical symbols, such as
those that stand for unknown quantities or
geometric objects.

Divisibility: The divisibility of a number describes
whether any numbers can be divided into it
with no remainder. For example, 10, 15, and
20 are divisible by 5. The divisibility rule for 5
is that 5 will divide evenly (with no remainder)
into numbers that end in 5 or 0.

Equation: A mathematical statement with an equals
sign that shows that two quantities have the same
measure is called an equation. It may include
unknown quantities. For example, 9 + 1 = 2 x 5
is an equation, and so is 2x = 10.

Factors: Numbers that divide evenly (with no
remainder) into a number are factors of that
number (see also divisibility).

Level: Level means flat or parallel to the floor, as
in a balanced, or equally weighted, scale.

Sum: Sum is a name for the number you get when
you add two or more numbers. For example,
the sum of 2 + 5 + 1 is equal to 8.
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6. They can decorate the balances if they wish us-
ing markers. For example, it might be fun to put
a big equals sign on the tube. Now they are ready
to start modeling equations.

7. Hand out the pennies and clay balls to each group
and let them play awhile with their balances, put-
ting different items in either side to see what will
balance. Explain that their balances will be level
when the weight on each side is the same, is equal.
Then explain that keeping the balances level will
be the rule for the games that follow. They will
always be trying to make their balances level.

8. Have one person in each pair put pennies in one
side of the balance only, without letting the other
see how many he or she has put in. The child
should then put the tissue over the cup, just to
hide the contents without adding weight. Explain
that the pennies in that cup are an unknown
quantity.

9. The other child in the pair tries to guess how many
pennies are in the hidden side by putting pennies
into the other until the balance is level. At that
point they will have an equal number of pennies
on each side, an equal weight. Now have them
switch so that the other child puts pennies in for
his or her partner to guess.

10. Next have the children use their balance to solve
an equation. Tell them to put a ball and some pen-
nies in one cup. They will then put only pennies
in the other cup until the balance is level; that is,
until the weight is equal on both sides.

• Prepare the weights in advance so that the clay balls
of each color weigh exactly one, two, and three
pennies, as described above. You can weigh these
using a commercial balance, or make a balance in
advance for this purpose and to use as an example
for the kids.

Procedure

1. First have the children get into pairs, then get them
started making the balance (unless you decide to
make these ahead of time). Have them begin by
cutting the twine into three equal pieces.

2. Next have them make a small hole near each end
of the paper towel tube (each hole should be on
the same side of the tube, not one on top and one
on bottom). A hole punch works best, but an adult
can help make the holes with pointed scissors.

3. Next have them thread a piece of twine through
each hole, pulling each piece through the end of
the tube, so that both ends of the twine hang down
on each side.

4. Now the children make two holes in each yogurt
cup on opposite sides near the rim, then tie an end
of the twine through each hole. Alternatively, they
could just tape the twine securely on either side of
the cup.

5. Next, they tie the third piece of twine to the center
of the tube. They will use this to suspend the bal-
ance. If the tube doesn’t balance exactly, have them
slide the twine back and forth until it does. Then
have them hold the twine in place with tape.
Double-check that each balance is balanced.
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11. Ask them if they can figure out how many pen-
nies the ball equals in weight. They can add or
take away pennies from either side. The illustra-
tion on the activity sheet (page 101) gives them a
clue of how to go about this. In that example,
they have a clay ball and three pennies on one
side, and they have to add five pennies to the other
side for balance. To figure out the weight of the
ball (in pennies), they first have to isolate the ball
on one side, which means removing the three pen-
nies on that side. Removing these pennies makes
the balance uneven, so they have to do the exact
same thing to the other side—remove three pen-
nies. That leaves the ball on one side and two
pennies on the other. That means the ball is equal
in weight to two pennies. This is a good time to
talk about the concept that whatever you do to
one side of a level balance, you have to do to the
other side to keep it level; in other words, to keep
both sides equal.

12. Enjoy making up your own equations for the chil-
dren to solve. They could try to find how many
pennies each ball equals, then try to find how
many pennies two of each ball equals, and so on.
They may need to be reminded of the rule that
the balance must always stay level or balanced.

Suggestions

• You can make up and solve all sorts of simple equa-
tions using the balance. It is not necessary to write
out the solution algebraically at this stage, but the
activity will provide a concrete understanding of
the algebraic process when it comes later.

• You could encourage older children to write out
the mathematical operations as they perform them.
This will prove a solid introduction to the skill of
solving linear equations.

• Encourage children to make up their own games.

Assessment

Children can demonstrate their understanding by solving
an example.

☞Discourage students from using a trial-
and-error method by insisting on the rule
that the balance must stay level at all
times. To do this, they must repeat the
same action on both sides when adding
or subtracting.
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Extension Activity
You can make a harder game by having the
children use two of the same object on one side,
and the right number of pennies to balance on
the other side. They can still add pennies to
each side, but they need to be sure they begin
with it balanced and always keep it that way.
Have the children model any simple linear
equation, such as 2x + 1 = 5, as illustrated below.

The ball in the illustration below is the
unknown quantity, the x.

First they would need to remove one penny
from each side (making the equation 4 = 2x),
and then to get the ball weight, they would
divide each side by 2, which means removing
half of the contents of each cup, leaving one
ball on one side and two pennies on the other,
proving that x (the ball) equals 2 (the weight
of two pennies).
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For this activity, you get to make a balance. You can use
it to play with different weights. Always keep your bal-
ance level. The balance is a model of a mathematical
equation, and you will be practicing the techniques of
solving equations.

1. Get into pairs and cut your piece of twine into three
equal pieces.

2. Now make a small hole near each end of the paper
towel tube (each hole should be on the same side
of the tube, not one on top and one on bottom).

3. Next, thread a piece of twine through each hole
and out each end of the tube so that you have two
pieces hanging down on each side.

4. Now make two holes on opposite sides of each yo-
gurt cup and tie one end of the twine through each
hole, or securely tape the string to each side near
the rim of the cup.

5. Tie a piece of twine around the center of the tube
to suspend your balance. If the cups don’t balance
exactly, you need to slide the twine back and forth
a bit until they do. When the balance is level, hold
the twine in place with a piece of tape.

6. Now decorate your balance with markers. For ex-
ample, you could put a large equals sign (=) on your
tube.

7. Play around with putting the balls of clay and the
pennies in the cups. For example, if you put four
pennies in each side, and now remove only one from
one side, what happens? What if you remove one
penny from each side instead? When you have the
same number (or weight) in each cup, the balance
should be level, which means the tube should be
straight horizontally, not tipped. This will be the
rule for the games you will play—the balance must
always be level.

8. For the first game, one of you puts pennies in one
side of the balance only, without letting the other
see how many, then puts a piece of tissue over the
cup to cover it. The other person tries to guess how
many pennies are in that cup by adding pennies to
the other cup to make the balance level. After the
second person figures out the number of pennies,
switch roles and try it again.

Balances and Equations
Activity Sheet
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9. The next game makes things more interesting.
This time, one of you puts a clay ball (which is
equal in weight to an exact number of pennies)
in one cup along with a few pennies, and the num-
ber of pennies with the same weight in the other
cup. You will know the pennies are the same
weight when your balance is level.

10. Can you figure out how many pennies the ball’s
weight equals? How would you figure this out?
Remember, you can add or take away pennies
from either cup, but you still want to keep your
balance level. The illustration below shows an
example. In the illustration, we have a ball and
three pennies on one side and five pennies on the
other side. If we take away three pennies from
both sides, we have just the ball on one side and
the two pennies on the other side. In other words,
we’ve isolated the ball. Now we can see that the
weight of one ball equals two pennies.

11. Can you figure out how many pennies are equal
in weight to a different ball and some pennies in
your balance? What can you do to always keep
your balance level?

Remember that in the example,
when we took three pennies
from one side, we took three
pennies from the other side as
well to keep the balance level.

Balances and Equations
Activity Sheet

Removing three pennies from each side
isolates the clay ball (the larger circle).

12. Have fun figuring out the weights of all the
balls, or try to solve the games (equations)
your teacher gives you. You could even make
up your own!

17b
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PROOF WITH
PYTHAGORAS
AND FERMAT

Activity

18
The BIG Idea
Sometimes it’s hard to be sure of a mathematical idea. At
what point do we know something will always be true?

Content Areas in This Activity
• Addition, single digit
• Addition, double digit
• Multiplication, single digit
• Square numbers
• Angle measurement
• Volume measurement
• Geometric terminology (optional)

Process Skills Used in This Activity
• Reasoning
• Problem solving
• Hypothesizing
• Concept of proof

Prerequisite Knowledge and Skills
• Multiplication, single digit
• Idea of area of squares

Age Appropriateness
Children may do either or both parts of the activity. Most
children will be able to do the first part, but children may
need to be at least eight years old for the second part.
Older children (about age ten) will be able to see the more
algebraic interpretation and do calculations of other ex-
amples without constructing the areas and volumes.

Mathematical Idea
The Pythagorean theorem has been around for thousands
of years. A group of mathematicians called the Pythagorean
Brotherhood, named after their leader, Pythagoras, came
up with the idea. They were reported to put members to
death who told any of their secrets!

One of these secrets was the discovery that if you mea-
sure and add the areas of the squares on two sides of a
right-angled triangle (the kind with a square corner), that
the area of the square drawn on the third side would ex-
actly equal the sum of the other two areas. This led to the
discovery of square roots, and of the fact that not all square
roots are exact numbers.
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Some numbers will work exactly. For example, draw-
ing a right angle with one side of length 3 and one 4 will
give a diagonal side (called the hypotenuse) of length 5.
The areas will be 3 x 3, or 9, and 4 x 4, or 16, on the small
squares, which add up to 5 x 5, or 25, on the bigger one.

9 + 16 = 25

5 x 5 = 25

4 x 4 = 16

3 x 3 = 9

However, just looking at several examples isn’t enough
to be sure something is always true. For example, think of
“proving” that all odd numbers are prime. Since 3, 5, and
7 are both odd and prime, we might conclude that this is
true for all odd numbers, but if we hit upon the counter
example of 9, we will have proved this idea to be false. A
formal argument that works for any numbers is always
the best bet. A formal proof of the Pythagorean theorem
reads like an algebraic argument (see the example proof
in the box at right). Many such proofs have been devised
since Pythagoras’s time.

It is interesting to note that if a, b, and c are the sides
of a right-angled triangle, then the Pythagorean relation-
ship only works for squaring the numbers (a2 + b2 = c2). It
does not work for the case of a + b = c because the triangle
wouldn’t exist. The sum of a and b must be greater than c.
Nor, as we see in the second part of this activity, does the
Pythagorean relationship work for cubes; that is, a3 + b3 = c3

does not work.

There are many proofs of the Pythagorean theorem. In this
activity, the children get a taste of the Pythagorean theorem
without devising a formal proof. Later, often in high school,
they will explore formal proofs of this theorem, such as the
one below.

Pythagorean Proof Example
Construct square WXYZ in square ABCD. The area of ABCD
is (a + b)2 because a + b is the side length of ABCD. The area
of ABCD is also c2 + 4(1/2ab); in other words, the area of WXYZ
plus the four triangles.

So (a + b)2 = c2 + 4(1/2ab)

which can be broken down further into a2 + 2ab + b2 = c2 + 2ab

Subtracting 2ab from each side above, we have a2 + b2 = c2 in
any right-angled triangle abc as above.
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The counter example that the children construct in
the second part of this activity is enough to disprove a3 +
b3 = c3. One counter example is enough to show an idea
doesn’t always work. Fermat’s last theorem goes even fur-
ther. It states that for any dimension n, there are no whole
numbers a, b, and c such that an + bn = cn. Looking at the
case of n = 3, this theorem states that there are no whole
numbers for a3 + b3 = c3, as discussed above. These num-
bers don’t have to be the sides of a right-angled triangle
for the theorem to apply. So maybe 33 + 43 doesn’t equal
53, but could it equal 63? Pierre de Fermat believed no
such numbers existed. He wrote in a marginal note that
he had a truly marvelous proof, but the margin was too
small to contain it. He never did write out this proof, and
finding it fascinated mathematicians for centuries. Finally,
at the end of the twentieth century, British mathematician
Andrew Wiles proved the theorem—it took him seven years!

Angle: The amount of rotation needed to get from one
direction to another is an angle. Often we speak of the
angle between two lines: This is the amount of rotation
needed to get from one line to the other. It is often
measured in degrees (see also degree).

Area: Area is the number of 1 x 1 squares that it takes to
cover a surface. For example, the area of a 2-inch by 3-
inch rectangle is 6 square inches (that is, 2 x 3 = 6); in
other words, it takes six 1-inch by 1-inch squares to cover it.

Cube: A three-dimensional object with six square faces is a
cube. All the angles are 90 degrees.

Degree: A unit for measuring rotation, abbreviated as °, is a
degree. A complete rotation is said to be 360 degrees.
This comes from the historical thought that it took 360
days for the Earth to revolve once around the sun. Two
lines at right angles form angles of 1/4 rotation, which is
90 degrees (that is, 360 divided by 4).

Edge: An edge is the straight line that bounds a closed shape.
For flat shapes, we usually call these sides, but in three
dimensions we call them edges. For example, a cube has
12 edges—think of it as the number of toothpicks it
would take to construct it.

Face: The flat outside surfaces of a three-dimensional solid
are called faces. For example, a cube has six faces.

Fermat’s last theorem: Fermat’s last theorem is a result put
forth by French mathematician Pierre de Fermat several
hundred years ago. He observed that there are lots of
examples in which the sum of two squares is a square
(e.g., 32 + 42 = 52 but that this can never happen for whole
numbers with powers greater than 2. For example, it’s
never true that the sum of two cubes is a cube, when the
cubes have whole-numbered sides. So 33 + 43  does not
equal 53 or 63 or cubes of any other whole numbers.

HELPFUL TERMS
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Formula: An algebraic rule for getting a result is a formula.
For example, the formula for the area of a rectangle is
length x width = area.

Height: The vertical measure of an object, measured from
the base to the highest point, is its height.

Hypotenuse: This term specifically refers to the side of a
right-angled triangle that is opposite the right angle—it
will be the longest side of the triangle.

Hypothesize: Another name for hypothesize is conjecture. It
means to put forth an unproven theory for testing.

Length: Length is the measure of one dimension of a
geometric object, such as one side of a rectangle.

Net: A layout of flat faces that fold up into a particular three-
dimensional object is called a net. For example, you can
arrange six squares into a number of nets that will fold
up to construct a cube.

Proof: A mathematical proof is a sequence of logical
deductions to establish the truth of something new from
something we know. If the proof applies to an idea that
includes an infinite number of values, then examples are
not enough to prove something. More recently, arguments
that show an idea by moving through the range of
possibilities (say with a diagram on a computer) are being
considered as close to mathematical proofs, often dubbed
dynamic proofs.

Proof by counter example: One accepted way to prove
something false is to come up with a counter example—
an example for which the idea doesn’t hold. This is
considered enough evidence to assert that the idea doesn’t
always work, so it is not universally true.

Pythagorean theorem: This theorem describes the
relationship of squares drawn on each of the three sides
of a right-angled triangle: The areas of the two smaller
squares added together will always exactly equal the
square drawn on the longer side (called the hypotenuse).

Square numbers: Square numbers represent the areas of
squares that have sides of whole (not fractional) numbers.
For example, 25 is a square number because it is the
area of a 5 x 5 square.

Sum: Sum is a name for the number you get when you add
two or more numbers. For example, the sum of 2 + 5 + 1
is equal to 8.

Theorem: Theorem is a name for a mathematical idea that
can be proven to be always true.

Three dimensional: A three-dimensional object isn’t flat but
uses up space (volume). For example, a square is two
dimensional but a cube is three dimensional.

Triangle: A three-sided flat (plane) figure (or polygon) is
called a triangle. A right-angled triangle has one 90-degree
angle in it.

Two dimensional: A flat shape (you could draw it on a
piece of paper), or a shape with no thickness, is two
dimensional.

Volume: The space used by a three-dimensional shape, or
the quantity of material needed to fill it, is the shape’s
volume.

Whole numbers: Numbers, such as 0, 1, 2, 3, and so forth,
that do not have decimal places (other than zero) are
whole numbers.

Width: The distance across a shape is its width.

HELPFUL TERMS
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Objectives

• Children will experiment with some famous math-
ematical ideas.

• Children will explore the Pythagorean theorem geo-
metrically and discuss what they think would be
enough evidence to be sure it always worked.

• Children will experience a proof by counter ex-
ample of the idea that the Pythagorean theorem
doesn’t work in three dimensions.

Materials

✔ five sheets of  8 1/2" x 11" paper for each child

✔ a sheet of 8 1/2" x 11" graph paper for each child

✔ scissors for each child

✔ glue stick for each child

✔ ruler for each child

✔ pencil for each child

✔ several cups light cereal, rice, or foam chips for each
child

✔ photocopy of the Proof with Pythagoras and Fermat
Activity Sheet (on pages 110–111) for each child

Preparation

For younger children, or just to save time, you could
preassemble the cubes for the second part of the activity.

Proof with Pythagoras and
Fermat: Making It Work

Procedure 1: Pythagorean Theorem

1. First have children use the graph paper to draw a right-
angled triangle, a triangle with a square corner.

2. Now, using their rulers, they measure the length of
one side, then draw a square using that side of the
triangle as one of the sides, with the other sides of
the square the same length (as shown in the illus-
tration below). They should write “A” on or next
to this square. You could review the area of the
square with the children at this point.

3. Have them do the same for the other sides of the
triangle, labeling one square “B” and the largest
square “C.”

The three squares
drawn on the sides
of the right-angled
triangle.

☞Be sure the children really draw a
square of side length c. This square
is harder to see because side c is
slanted on the original triangle.
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4. Next they pick the largest square, the one that
matches up to the hypotenuse, and cut it out. Tell
them they are going to check and see if the area of
the big square is the same as that of the two small
ones added together.

8. Before starting the second part of the activity (an
exploration of Fermat’s last theorem), ask the kids
to predict whether they think the same principle
they just explored will also be true with cubes in-
stead of squares. In other words, if they construct
cubes with faces that are the length of each triangle
side, will the largest cube be able to hold the same
amount (will it have the same volume) as the two
smaller cubes put together?

Procedure 2: Extending to Cubes

1. Using the same triangle from the first part of the
activity, have the kids construct a cube with sides
the same length as one side of the triangle. In other
words, they will need five squares identical in size
to square A from the first part of the activity. If you
worked on activity 15 (What Color?) with the chil-
dren, you could remind them that they can arrange
the squares as a net for an open cube, as shown in
the illustration on page 111.

2. Have them cut out the net, or the five squares, and
assemble them into a cube that’s open on top by
taping the sides together.

3. They repeat the process to
make cubes for the other two
sides (using five squares the
size of square B and five
squares the size of square C
from the first part of the ac-
tivity). Ultimately, they
should have three cubes that
line up with the triangle, as
shown in the photo at right.

☞Try both parts of the activity in a
group, so everyone can examine
and discuss the examples together.

5. They should cut out the next largest square and set
it on top of the large one, noting that there are gaps
around the smaller square where it doesn’t meet up
with the edges of the larger square. Do they think
they can fill those gaps exactly with the smallest
square?

6. Next they cut out the smallest square, then cut it
more to fit the gaps. If they cut carefully, they should
be able to fill the gaps so that both smaller squares
cover the largest square.

7. The most important part of this activity is the dis-
cussion at this point. Looking at the various differ-
ent examples, ask the children whether they think
this idea will always be true. Could there be a case
where it wouldn’t work? Discuss how mathemati-
cians like to have a formal logical (mathematical)
argument before they are totally convinced of some-
thing. Such logical deductive arguments are called
proofs.

An open cube constructed on
each side of the triangle.
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4. Now they fill the two smaller cubes right to the top
with cereal, rice, or foam chips.

5. Next, they pour the contents of both of the smaller
cubes into the larger cube. Ask them if they are able
to fill up the larger cube. Discuss that by finding
one example where something isn’t true, they’ve
shown that it can’t always be true. In this case, they
found one example where the sum of the volumes
of the two smaller cubes doesn’t equal the volume
of the larger cube. So there isn’t a version of the
Pythagorean theorem with cubes instead of squares.
With older kids, you can explain that they just
proved something wasn’t always true using proof
by counter example, by finding one example where
it doesn’t apply. (Fermat’s last theorem actually as-
serts a bit more; namely, that there are no whole
numbers at all for which the idea a3 + b3 = c3 works.
The a, b, and c do not have to be sides of a tri-
angle.) Younger kids can just experience the concept
that the contents of the smaller cubes don’t fill the
larger cube (as the smaller squares filled the larger
square) without needing to understand the idea of
proof in depth.

Suggestions

• Children may need help constructing squares of a
given size.

• Encourage discussion about whether seeing these
examples proves the idea. A mathematician would
say that even a huge number of examples is not a
proof. The idea in the first activity does happen to
be true, and a proof is often given in high school.

• Children may need a little help constructing the
cubes for the second part of the activity.

• You could encourage older children to calculate the
measures of the volumes of the three cubes. They
should find through numerical calculations alone
that the idea does not always work. For example,
(3 x 3 x 3) + (4 x 4 x 4) = 91, which is not equal to
5 x 5 x 5 = 125. This part of the activity is a proof
by counter example. If you can find even one case
where a theorem doesn’t work, you have proved its
falsity—that is, it is not always true. (But proving it
is never true is another matter!)

Assessment
Children can discuss the difference between examples of
something being true and knowing something will always
be true. You might ask them what finding a counter ex-
ample means: Does it mean the idea doesn’t always work?
Does it imply that the idea never works?
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Extension Activity
Have the children explore whether the sum
of the two smaller areas would add up to
the larger area if they constructed other
shapes on each side of the triangle, such as
an equilateral triangle or a regular hexagon.

The Pythagorean theorem has a practical
use in measuring distances. If we want to
know the distance across a lake, for example,
we can set up two measurements (a and b)
on the shore at right angles (along the lake
horizontally and vertically). Considering the
distance across the lake (the hypotenuse) is
equal to a2 + b2, we can calculate the distance
by squaring a and b, adding them, and using
a calculator to get the square root (because
the square root of c2 is c). Challenge the
children to calculate the distance across the
lake if a = 12 and b = 5.
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Pythagoras and Fermat were famous people who had
interesting mathematical ideas related to geometry. Both
wanted to find a way to prove their ideas were correct.
In this activity, you get to explore both ideas and think
about what it would take to prove either one to be true.

The Pythagorean Theorem
1. On graph paper, draw a triangle that has a square

corner, just like the one below (but you can make
it any size). This is called a right-angled triangle.

4. Pick the largest square (the one on the longest side
of the triangle), cut it out, and set it in front of you.

Proof with Pythagoras and
Fermat Activity Sheet

2. Now measure the length of one side with your ruler,
and draw a square with all four sides of this length.
Write “A” on or next to this square.

5. Now check to see if the area of the big square is the
same as the areas of the two small ones added to-
gether. This is the idea that Pythagoras had (that
a x a + b x b = c x c). First, put the second largest
square on top of the big one. Notice that it doesn’t com-
pletely cover the large square, but instead leaves gaps.

6. Now cut up the small square to fill in the gaps. If
you cut carefully, you should be able to cut the
smallest square into pieces that fill the gaps, so both
smaller squares cover the largest square. In fact, this
will work with any size right-angled triangle.

Of course this is not a proof, just one of many
examples. The idea that a2 + b2 = c2 is called the
Pythagorean theorem and it has been around for
thousands of years.

7. Discuss with your friends what you think would
be needed to be sure this idea always works.

The longest side of a triangle
is called its hypotenuse.

3. Do the same for the other two sides, and label the
squares “B” and “C,” with “C” as the largest square.

1

2

3

4

18a

5

6

7
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Extending to Cubes
Now, if you make cubes on each side of the triangle, do
you think the volume you need to fill the two small cubes
will be the same as the amount for the large one? Fermat
wondered if you could add up the volumes of two cubes
with whole-number sides and get another whole-numbered
cube (where the side lengths do not necessarily form a
triangle). Let’s try it on the triangle first and see!

1. To make the first cube (or open
box, which you’re going to leave
open so you can fill it), you have
to cut out five squares the same
size as square A. Laid out, before
making the cube, the squares
might look like this:

2. Now tape the five squares together to make an open
cube.

3. Make open cubes on sides B and C in the same way,
making the dimensions the size of each triangle side.

5. Pour both of the amounts from the two smaller
cubes into the bigger cube. Are you able to fill the
larger cube? If you can find even one example where
the two small volumes don’t equal the large volume,
you have proved that the theorem doesn’t always
hold true for cubes. In other words, the sum of the
two smaller volumes doesn’t always equal the large
volume the way the sum of the area of the smaller
squares equaled the area of the largest square.

Proof with Pythagoras and
Fermat Activity Sheet

The cubes will all have different heights.

4. Now let’s experiment. Fill the two smaller cubes
right to the top with a light material such as cereal,
rice, or foam chips.

Recently mathematician Andrew Wiles proved that the
idea behind the Pythagorean theorem works only for
squares, not cubes or shapes of higher dimensions. In fact,
he proved that there are no whole numbers at all made
into cubes for which the two smaller cubes add up to an-
other perfect (whole-numbered) cube; nor does this work
in higher dimensions. This is called Fermat’s last theorem
because it was the only one of Fermat’s theorems no one
had proved yet—until Andrew Wiles came along. It took
Wiles seven years to prove!

When you can prove that something
is not always true by finding just one
example when it’s not, this is called a
proof by counter example.

18b
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STREAMERS
PROBLEM

Activity

19
The BIG Idea
There are real mathematical formulas to be found by
investigating fairly simple problems.

Content Areas in This Activity
• Addition, single and double digit
• Multiplication, single digit (optional)
• Division, single-digit divisor (optional)
• Geometric patterning (optional)
• Numeric patterning
• Pattern rules
• Iterative patterns

Process Skills Used in This Activity
• Reasoning
• Hypothesizing
• Problem solving
• Concept of proof (optional)
• Communication (optional)

Prerequisite Knowledge and Skills
• Addition, single and double digit
• Subtraction, single digit
• Multiplication, single digit (helpful)

Age Appropriateness
Children will need to be able to multiply to work with
this problem easily. However, I recall a child who was not
able to multiply but who quickly saw the method as “sub-
tract one from the number (of dots), and then write down
all the numbers going down to one, and add them up.”
This child was supposed to be very poor in mathematics
according to her teacher. The recognition she received for
solving such a difficult problem was incredibly important
to her—and her school grade improved from failing to A’s
over the next several years! It’s not always inappropriate
to let children try a challenging problem for the chance to
make some mathematical discoveries.

Mathematical Idea
There are many wonderful patterns in mathematics, and
often a relationship seems to spring out of more than one
type of pattern. In this activity, a pattern of addition, such
as adding up a list of consecutive whole numbers (1 + 2 +
3 + 4 . . .), has the same solution as a pattern of multipli-
cation and division, n (n – 1) ÷ 2, which can be also be
used to add up a list of consecutive numbers from 1 to
n – 1.
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This activity starts with the children modeling a
mathematical problem using streamers, a problem with
both an additive and multiplicative solution. You start with
a group of six children, then ask them how many streamers
are required to connect each child to every other child once.
Focusing on one child, you would ask how many streamers
that child would need to hold to connect to the other five
children—five. Focus on another child next and ask the
same question, but this time that child is connecting to
four other children, since he or she is already connected
to the previous child. Continuing as such enables the
children to do some true mathematical exploration by
figuring out how many streamers they need to join every
child to every other child in groups of varying numbers of
children. Through this exploration, children learn to relate
the number of streamers to the number of children in each
situation, and then to relate them in general by discovering
a rule to apply to every similar situation.

Using different colored streamers may help illuminate
the relationship. For example, in a group of four children,
you could start by giving one child three red streamers
(one fewer than the number of children in the group) to
connect that child to the other three children in the group.
Then give the next child two blue streamers to connect to
the other two children in the group (minus the first child,
to whom the second child is already connected with a red
streamer). Then you would give the next child one green
streamer to connect with the other child in the group
(minus the first two, to whom this child is already con-
nected with one red streamer and one blue streamer). The
last child in the group gets no new streamers because now
all children are connected. So for four children, the solu-
tion to how many streamers are required to connect them
becomes 3 (red) + 2 (blue) + 1 (green) = 6. This is called

a recursive solution because each number we add is based
on the previous number. This is one way to look at the
problem using addition.

Another way to look at this problem is to search for a
pattern involving multiplication. We saw above that the
number of streamers each child holds is one less than the
number of children. (They are each holding a streamer to
connect to every child, other than themselves.) With this
in mind, can we just multiply the number of children by
the number of streamers each holds, which will be one
less than the number of children? For a group of four, then,
we would multiply 4 x 3 for a total of 12. Oops! That’s
counting each streamer at both ends. So we have to divide
by 2. This gives the result (4 x 3) ÷ 2 = 6, or a general rule
of n (n – 1) ÷ 2, where n is the number of children.

If you are lucky enough to have a group of children
discover both ways of looking at the problem, encourage
them to notice that they have invented a fast way to add a
list of consecutive numbers from n – 1 down to 1. That is,
1 + 2 + 3 . . . + (n –1) = n (n – 1) ÷ 2. Gauss invented this
formula when his teacher asked him to add the numbers
1 to 100 for punishment. His formula, n (n + 1) ÷ 2, is
essentially the same as
n (n – 1) ÷ 2. The differ-
ence is in what you
allow n to be. So if you
wish to add 1 through
100, you could have
n = 100 and use the n + 1
version, or you could
have n – 1 = 100, so that
n = 101, and you use the
n – 1 version to achieve
the same solution. The streamers problem illustrated by five children.
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Algebra: Algebra refers to rules and language for working
with mathematical symbols, such as those that stand for
unknown quantities or geometric objects.

Equation: A mathematical statement with an equals sign
that shows that two quantities have the same measure is
called an equation. It may include unknown quantities.
For example, 9 + 1 = 2 x 5 is an equation, and so is
2x = 10.

Formula: An algebraic rule for getting a result is a formula.
For example, the formula for the area of a rectangle is
length x width = area.

Gauss’s formula: Gauss’s formula is one he invented when
asked by a teacher to add up the numbers 1 to 100 as a
punishment. He added them up twice like this:

Patterns: Sets of items, such as numbers or shapes, that are
continued in a predictable way are called patterns. Linear
patterns change by the same amount each time: for
example, 2, 4, 6, 8, . . . (changing by 2) or red, blue, red,
blue. Nonlinear patterns change by a different amount
each time: for example, 2, 4, 7, 11, 16, . . . (changing by
2, then 3, then 4, then 5, and so on). Second-degree
patterns are nonlinear patterns that have a second-degree
term in them, such as n2.

Product: The result we get when multiplying two or more
numbers is called a product. For example, multiplying 2
times 3 gives a product of 6.

Proof: A mathematical proof is a sequence of logical
deductions to establish the truth of something new from
something we know. If the proof applies to an idea that
includes an infinite number of values, then examples
are not enough to prove something. More recently,
arguments that show an idea by moving through the
range of possibilities (say with a diagram on a computer)
are being considered as close to mathematical proofs,
often dubbed dynamic proofs.

Recursive solution: A recursive solution involves getting the
answer to a repeated process by knowing the previous
term and how much the terms change each time. For
example, if you know a set of numbers goes up by 3
each time, and the previous number is 11, then the next
number is 11 + 3 or 14.

Sum: Sum is a name for the number you get when you add
two or more numbers. For example, the sum of 2 + 5 + 1
is equal to 8.

Theorem: Theorem is a name for a mathematical idea that
can be proven to be always true.

and saw that for twice the sum he had 100 pairs of sums
of 101. So he calculated the sum as 100 x 101 ÷ 2. In
general, the formula for the sum of numbers 1 to n is n
(n + 1) ÷ 2. This is like the streamers problem for 101
kids.

Hypothesize: Another name for hypothesize is conjecture. It
means to put forth an unproven theory for testing.

Iterative process: Repeating a rule over and over, possibly
on a smaller or larger scale, is an iterative process. For
example, take your calculator and enter 1,000 and hit the
square root button again and again. This is an iterative
process that gives a sequence of numbers converging to 1.

1 + 2 + 3 + 4 . . . + 100

100 + 99 + 98 + 97 . . . + 1

HELPFUL TERMS
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Streamers Problem: Making It Work

Objectives
• Children explore a famous mathematical problem,

often known as the handshakes or nodes problem,
in a concrete way. The problem is to calculate the
number of connections needed to connect a group
of objects each directly to each other.

• Children experience a nonlinear problem.

Materials
✔ five streamers of one color

✔ four streamers of a second color

✔ three streamers of a third color

✔ two streamers of a fourth color

✔ one streamer of a fifth color

✔ five different pen colors for each child

✔ photocopy of Streamers Problem Activity Sheet
(pages 118–119) for each child

Preparation
None except to cut the streamers to equal lengths if
necessary.

Procedure
1. This activity should be done as a group of six. Ask

the class how many streamers you would need to
connect one child to the other five children. Give
that child five streamers of one color, with the other
five children each holding the other end of one of
these streamers to illustrate the answer: five.

2. Now ask the class how many streamers it would
take to join another child to the remaining chil-
dren to which that child is not connected (four
children and four streamers). Use a new color for
these four streamers to illustrate this relationship.

3. Continue the same process, with a new color of
streamers each time, for the remaining children. By
the time you get to the sixth child, all children
should already be connected by streamers: five of
one color, four of another color, three of a third
color, two of a fourth color, and one of a fifth color.
The colors themselves will lead the children to see
the additive solution immediately. Questions such
as “How many kids are there?” “How many stream-
ers does each have to hold?” and “How many in all
is that?” will point to the more general (multiplica-
tive) solution. The multiplicative solution is more
general because it works with any number just as
easily.

4. After introducing the children to the concept using
the streamers, have them try out the same problem
on their activity sheets, where the dots represent
children and the lines are streamers.

5. For each set of dots they figure out, have them write
the number of streamers in the chart on page 119.
The first few are filled in to get them started. For
example, one child (or dot) requires zero streamers.
Two children, as we saw with the streamer exercise
above, require just one streamer. Three require three



116

Chapter 19

☞streamers. The children then try to figure out how
many streamers they would need to connect four
children, then five, then six. Encourage them to use
different colors for the streamers that come from
each dot, similar to the way you used different col-
ors of streamers for each child when you modeled
the streamers problem as a group.

6. After the children have figured out how many
streamers are required to connect six children, ask
them if they can see a pattern in the number of
streamers and children. Can they find a general
solution, a rule that will always work to find the
number of streamers no matter how many children
there are? When looking for a general solution,
children may be tempted to look for a pattern in
the numbers themselves, but because this is a more
difficult pattern (a second-degree pattern), this
method will be difficult. Using the worksheet, you
could ask helpful questions such as “How do you
know when you have counted all the lines from
each dot?” and “Can you predict how many lines
there will be at each dot if there are seven dots?”

7. Once they have come up with the idea of multiply-
ing the number of children (dots) by one fewer than
the number of children, it is time to check if these
results match the table data. Often if they write the
predicted results next to each counted result in the
chart, they will see that the multiplication method
counts each line twice (from both ends), and all
they have to do now is divide by two.

Suggestions
• It is amazing to see even six-year-olds catch on to

the pattern that we need one fewer new streamer
each time, which they will if they get one of the
streamers being handed out.

• Another interesting method, which children as
young as eight may discover, is to examine all the
results in the chart and notice that the number of
streamers increases by a number that is one bigger
each time. That is, in the pattern of the number of
lines 1, 3, 6, 10, 15, the difference between one
number and the next keeps getting bigger by one.
So the pattern of differences above is 2, 3, 4, and 5.
Based on this, we would (correctly) predict that we
would add 6 to 15 to get the result of 21 for the

Children need to understand the idea of
multiplication before the general rule (or
formula) will make sense. Younger children
who are not comfortable with multiplying
may prefer the method (for example, in
the six-dot case) of coloring the first five
lines in one color, then the next four lines
in another color, and so forth, ultimately
adding up the numbers from n – 1 (when
n = 6) to 1: 5 + 4 + 3 + 2 + 1 = 15. They
won’t understand the multiplicative formula,
of course, but they’ll get a taste of the
recursive pattern involved using addition
instead of multiplication and division.
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next (seven dot) case, and so on. This is a property
of second-degree patterns: that the differences be-
tween numbers are predictable but not constant.

• This well-known problem is an invitation into the
world of proof, with the important question being
“How do we know this method will always work?”
Children need plenty of time to develop an under-
standing of why sometimes we need to have a way
to “know for sure.” Looking at examples to prove
something can lead to false conclusions if we don’t
also use reasoning. The classic case is that of con-
cluding that all odd numbers are prime by
examining 3, 5, and 7. This conclusion doesn’t make
the connection, through reasoning, that this doesn’t
apply to all odd numbers just because it happens
to apply in these cases. In the streamers solution,
however, the reasoning can be set up to apply to
any number of children, each holding a number of
streamers that is one less than the number of chil-
dren. Because the argument can be seen to work for
any number of children, we can see that it always
works. This problem provides an opportunity for
them to justify their reasoning, an important first
step in the creation of a mathematical proof.

Assessment

Ask children to predict how many streamers it would take
for a group of eight children to each be connected to every
other child with a streamer.

Extension Activity
Encourage children to consider real-life
situations in which the formula might apply,
such as determining how many wires are
necessary to set up a network of n computers,
or how many meetings to set up at a
conference of n people so that everyone has
a chance to meet with everyone else one-
on-one.
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Now that you’ve had a chance to explore the streamers as
a class, it’s time to work out the same problem on paper.

1. Look at the pictures on the second page of your
activity sheet and pretend each dot represents a
child, and each line a streamer the children are
holding. For each set of dots, solve the same prob-
lems you solved as a class using actual streamers:
In each case, how many streamer pieces are needed
to join every child to every other child? When you
have an answer, write it in the chart on the next
page. The first few are done for you as examples.

2. Can you find more than one way of figuring out
the number of streamers for five and six children?
Think about how many children there are and how
many streamers each is holding. Can you use mul-
tiplication to calculate the number of streamers if
you know the number of children?

3. Can you find a rule that will always work to find
the number of streamers no matter how many chil-
dren there are?

Streamers Problem
Activity Sheet

Test your rule with the actual
numbers. If it doesn’t work,
can you fix it so it does? For
example, if your rule gives you
double the correct number,
remember that every streamer
has two ends! What can you
do to correct your rule in this
case?

Look for a pattern in how
the numbers of streamers
are increasing. If you focus
on the streamers column
in the chart, can you see a
pattern in just that set of
numbers?

2

3
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1
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Streamers Problem
Activity Sheet

Number of Children Number of Streamers

01

12

33

4

5

6

n

19b
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3-D TIC TAC TOE
Activity

20

The BIG Idea
If lines in space intersect, then a point at this intersec-
tion is on both lines. In 3-D Tic Tac Toe, this might solve
two problems at once!

Content Areas in This Activity
• Three-dimensional visualization
• Intersections in space

Process Skills Used in This Activity
• Reasoning
• Problem solving

Prerequisite Knowledge and Skills
None

Age Appropriateness
Children of all ages can play this game with little support.

Mathematical Idea
Visualizing in three-dimensional space is hard to do on a
two-dimensional page. In linear algebra, lines in three di-
mensions can be hard to picture, so why not look at them
in three dimensions, instead of on the page?

This game gives practice reasoning in three dimen-
sions, in a problem-solving context. Intersecting lines are
important at various levels of mathematics, from Carte-
sian geometry to linear algebra, and also in this game. The
use of intersecting lines leads to a trick that is an impor-
tant winning strategy, namely the idea that the point of
intersection of two lines is a point on both lines.

Playing the game really gets children concentrating.
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Objectives

Children will practice problem solving and visualization
in three dimensions.

Materials

✔ four 8" x 8" (20 cm x 20 cm) squares of Plexiglas
(can be bought and cut at a building supply store)

✔ permanent black marker

✔ 12 pieces dowel, about 1 1/2" (4 cm) each

✔ glue to adhere to both wood and Plexiglas, such as
a hot glue gun

✔ 2 sets of 20 game chips

✔ photocopy of 3-D Tic Tac Toe Activity Sheet (on
page 123) for each child

Preparation
Preparation involves constructing the three-dimensional
game board as follows:

1. Score the Plexiglas squares with a marker, creating
16 small squares on each Plexiglas piece (a 4 x 4
grid)

2. Start with one square on the bottom and glue a piece
of dowel vertically in each corner. When the glue
is dry, add glue to the tops of the dowels and place
the second square on top of these.

3. Repeat with the third and fourth square, assembling
the squares in a vertical stack separated in each
corner by a piece of dowel.

3-D Tic Tac Toe: Making It Work
Algebra: Algebra refers to rules and language for

working with mathematical symbols, such as those
that stand for unknown quantities or geometric
objects. Linear algebra is the mathematics of linear
(straight-line) objects in space.

Angle: The amount of rotation needed to get from
one direction to another is an angle. Often we speak
of the angle between two lines: This is the amount
of rotation needed to get from one line to the other.
It is often measured in degrees.

Diagonals: The lines drawn to connect opposite
corners of a quadrilateral (four-sided) figure, or
the lines connecting any vertex to any other
nonadjacent vertex of a figure with more than four
sides, are called diagonals.

Linear: Linear refers to something that is straight, not
curved, such as a straight line

Three dimensional: A three-dimensional object isn’t
flat but uses up space (volume). For example, a
square is two dimensional but a cube is three
dimensional.

Vertices: The point where two or more edges meet
on a two- or three-dimensional shape is a vertex.
For example, a triangle has three vertices, and a
cube has eight vertices.
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Procedure

The object of the game is similar to regular tic tac toe,
except the children will try to get four pieces in a straight
line, and the pieces can go in any direction: vertically or
horizontally, as well as diagonally in any direction. Just as
in two-dimensional tic tac toe, a child can block an
opponent’s row with his or her own piece.

Suggestions
If children are unsure of what constitutes a straight line,
have them imagine running a pencil through all four
points. If an imaginary pencil sticking into the game board
can touch all the pieces, then they are on the same line.

Extension Activity
Challenge the children to think about the
winning strategy that involves intersecting
lines. Two intersecting lines of pieces, with
the point of intersection being the third chip
in each, will give the player two ways to win,
and the opponent can’t block both.

This chip is the key to this winning set-up because it is set at two
intersecting lines, one vertical and one diagonal.

Assessment

Children are successful if they can demonstrate an under-
standing of the game, including blocking an opponent’s
line and attempting to set up straight lines of their own.
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3-D Tic Tac Toe
Activity Sheet

The object in the game is for a player to get four pieces in a straight line in any

direction, similar to regular tic tac toe. You can block an opponent’s row of three

by putting in a piece of your own. Four in a row in any direction wins, including

vertically, diagonally, and horizontally. Have fun beating the grown-ups!

20
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FRACTALS
AND INFINITY

Activity

21

The BIG Idea
How big or small can things get? Can patterns keep get-
ting smaller forever?

Content Areas in This Activity
• Volume measurement
• Geometric patterning
• Numeric patterning (optional)
• Pattern rules
• Iterative patterns
• Three-dimensional visualization
• Fractal geometry

Process Skills Used in This Activity
• Reasoning (optional)
• Hypothesizing (optional)
• Problem solving (optional)
• Concept of proof (optional)
• Creativity (optional)
• Aesthetics of mathematics

Prerequisite Knowledge and Skills
None

Age Appropriateness
Fractals and infinity are great ideas that can be fairly simple
or very deep. I have had discussions about these ideas
with students ranging from age six to undergraduates in
college!

Mathematical Idea
Dealing with infinitely small (and large) quantities has
always been a major challenge for mathematicians, and it
has only been in the last century or so that mathemati-
cians have become more comfortable with these ideas.

In the last few decades, mathematicians have begun
to explore a brand new area of geometry, called fractal
geometry. This term was invented by a man named Benoit
Mandelbrot, who worked in the research department at
IBM and used computers to come up with amazing im-
ages—patterns that seemed to go on and on, on smaller
and smaller scales. Even as you zoom in closer and closer,
the shape relationships seem the same. Mandelbrot de-
scribes a fractal as something that, like a straight line, stays
the same as you move closer and closer to it, but that is
not a straight line. He contrasts a fractal to something like
a circle, which looks less like a circle and more like a
straight line as you magnify a portion of it. The Earth, for
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☞example, is not a fractal—as we get closer and closer to it,
it begins to look flatter. Nature is so full of fractals, math-
ematicians and scientists are finding that fractal geometry
is often a better way to describe nature than traditional
Euclidean geometry!

In this activity, the children get just a taste of the idea
of fractals and try to find fractals in the world around us.
They also get to create a very basic fractal using only pa-
per and scissors.

The extension activity introduces children to the no-
tion of a limit, which is an important intuitive idea. In the
extension activity, children are asked to imagine that the
open faces of the cut-out boxes are also covered with pa-
per to enclose the boxes. They are asked to imagine adding
up the volumes of these boxes, continuing this infinitely.
There is a seeming contradiction because even though a
positive volume is being added with each iteration, it is
hard to imagine the volumes adding up to more than the
size of the classroom. The key is the notion of a limit: As
long as what we are adding on each time gets closer and
closer to zero by a set ratio, there will be a limit beyond
which the sum will not go (although we can get as close
to it as we like). When we work with infinitely small num-
bers, the results can be interesting!

To check if something is a fractal, think
of zooming in on it and looking to see
if the forms remain the same. A fern is
a natural fractal: As you look closer at a
frond, it seems to be composed of many
tiny fronds, identical to the larger frond.
These tiny fronds, in turn, seem to be
composed of even tinier fronds, and
so on.

Fractal Websites
• www.scienceu.com/geometry/fractals/

• http://library.thinkquest.org

• www.mathsnet.net/fractals.html

• www.Mathworld.wolfram.com/Fractal.html
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Euclidean geometry: This is a type of geometry of plane
(flat) figures, made famous by the historical
mathematician Euclid, who lived 2,300 years ago.

Fractal: The modern mathematician Benoit Mandelbrot
coined this term to refer to self-similar objects. These
are objects that look the same as you get closer and
closer to them, with each smaller part a version of the
whole, but they are not straight lines. For example, a
jagged coastline looks jagged from afar, as it does if
you go closer and closer—the jaggedness repeats even
to the scale of grains of sand from the coastline, which
look jagged under a magnifying glass. It turns out that
nature is full of such objects, such as snowflakes and
ferns. Fractal geometry is a type of mathematics for
describing and constructing such objects.

Infinity: By definition this term is undefinable! We might
try to define it by saying that it is a number bigger
than all numbers, but since there can clearly be no
such number, we have not really defined it. It exists as
a theoretical construct only.

Iterative process: Repeating a rule over and over, possibly
on a smaller or larger scale, is an iterative process. For
example, take your calculator and enter 1,000 and hit
the square root button again and again. This is an
iterative process that gives a sequence of numbers
converging to 1.

Patterns: Sets of items, such as numbers or shapes, that
are continued in a predictable way are called patterns.
Patterns created using shapes are called geometric
patterns. Linear patterns change by the same amount
each time: for example, 2, 4, 6, 8, . . . (changing by 2)
or red, blue, red, blue. Nonlinear patterns change by a
different amount each time: for example, 2, 4, 7, 11,
16, . . . (changing by 2, then 3, then 4, then 5, and so
on) or red, blue, red, blue, blue, red, blue, blue, blue,
. . . Rotational patterns are patterns created by rotating
a shape or image. For example, a minute hand traces
a rotational pattern around a clock face.

Recursive solution/recursion: The idea of getting the
answer to a repeated process by knowing the previous
term and how much the terms change each time is
recursion.

Sierpinski triangle: A Sierpinski triangle is a pattern
created in a triangle using a repeated (iterated) rule of
joining the midpoints of each side to create a new
triangle in the middle, then removing the new triangle
(or coloring it black). See the photo on page 127, for
example.

HELPFUL TERMS
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Fractals and Infinity: Making It Work

Objectives

Besides bumping into the notion of infinity, children will
have a chance to appreciate the beauty of mathematics
and study the wonderful patterns of fractals.

Materials

✔ examples of fractals (see Preparation for tips)

✔ magnifying glass (optional)

✔ 11" x 17" paper for each child

✔ scissors for each child

✔ photocopy of the Fractals and Infinity Activity Sheet
(on page 130) for each child

The Sierpinski triangle is
one example of a fractal.

Preparation

Gather as many fractal examples and fractal-like objects
as you can to demonstrate the idea and open the discussion.
You can find many beautiful fractals on the web (just search
for the keyword “fractal” or try the sites listed in the box on
page 125). You could also bring in a book of fractal pictures.

A comic or cereal box that has a picture in a picture in
a picture would also be helpful. You could bring in any of
the objects shown or mentioned throughout this activity,
such as maple leaves or fern fronds, dream catchers, or a
Sierpinski triangle.

Ferns have fractal properties. Dream catchers also have fractal patterns.
Image by Brent Davis, from Engaging Minds: Learning and
Teaching in a Complex World (2000, p. 72), used by permission
from Lawrence Erlbaum Associates, Publishers, Mahwah, NJ.
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Procedure

1. Begin by discussing the idea of fractals, that they
are self-similar on every level, meaning their forms
repeat on smaller and smaller levels, like the fronds
of a fern. Pass around the examples of fractals you’ve
brought in and discuss them specifically. Children
can investigate fractals by looking at ferns (or pic-
tures of them), snowflakes, or maple leaves under
a magnifying glass. Certain root structures also have
this property. Ask the children if they can think of
other fractal examples, particularly those found in
nature.

edge (on the right and on the left). The cuts should
go halfway up the paper. See the first photo on page
129. They have now completed the fractal rule once.
This rule is to fold the paper, then make two vertical
cuts halfway up and a quarter-way in from each side.

4. Now they apply the rule again. Have them fold the
middle piece, between the two cuts, up to line up
with the top edge of the paper. Then they make
two cuts, a quarter-way in from the first two cuts
and halfway up the remaining paper. Then they fold
the cut-out piece up to line up with the top edge of
the paper, repeating the folding and cutting until
they can’t continue! Then have them open up the
paper to see the results of the repeating pattern. If
they refold the paper, they can create pop-up boxes
from the fractal.

Suggestions

• If the children need more help in understanding
the nature of fractals, have them draw their own
picture of themselves drawing a picture of them-
selves, drawing a picture of themselves, and so on
(or just discuss this idea).

• Shopping malls that have mirrors on two parallel
walls are wonderful places to go and think about
recursion and infinity. They are great places to talk
about the idea of things going on and on and to
think about how big infinity is.

• Unfolding the paper fractal may require some adult
assistance. Half of the folds will have to be refolded
in the opposite way to create the pop-up boxes. It is
easiest to get the largest box popping up the right way
and then work to the next smallest set, and so on.

☞The mathematical term for a repeating pattern
like those found in fractals is recursion. Children
can sense the concept of recursion by playing
the following game: Tell the children that when
they hear a clapping sound, they are to clap
their hands. Then start the recursive pattern by
clapping your hands. When they hear a clap,
they clap, and so on infinitely.

2. After the children seem to have a basic understand-
ing of fractals, get them started on creating a basic
three-dimensional fractal using a sheet of paper and
scissors. Have them start by folding their paper in
half vertically.

3. Have them set the folded paper in front of them,
with the fold on the bottom, then make two verti-
cal cuts about a quarter of the way in from each
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Extension Activity
Using the paper fractal from the activity sheet,
have children imagine that the back, bottom,
and sides of the boxes are covered with paper
so that all boxes are enclosed. Have them
discuss with a partner whether they think
the volumes of all these boxes added up will
keep on getting bigger and bigger. If they
think so, does this mean the sum of the
volumes will eventually get bigger than the
classroom? Or will the sum stop somewhere?
Things get interesting in mathematics when
we continue processes infinitely!

Assessment

Challenge the children to create their own fractals as a
way of assessing their understanding of the concept. They
can try drawing fractals, creating them with scissors and
paper like the one at left, or any other means they can
think to try, as long as they can create and follow a fractal
rule by repeating a particular pattern on smaller and
smaller (or larger and larger) scales.

Making the three-dimensional fractal requires applying the
same rule over and over: fold, cut, fold, cut, fold, cut, . . .

2. The first two cuts, each a quarter-way
in from the sides, going up halfway

The three-dimensional fractal opened up.

1. Fold the
paper in
half before
cutting

4. The second set of cuts, a
quarter of the way in from
the last two cuts

5. The fold after the
second set of cuts

3. The first
fold after
the first
two cuts

�
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A pattern that continues, but gets smaller and smaller
(or larger and larger), and that could theoretically go on
forever is a fractal pattern. Many things in nature have
fractal properties, such as a fern does. You can look at the
fronds of a fern and see a tiny row of fronds on the fronds.
If you look at this tiny row of fronds, you’ll see that these
fronds have their own tiny rows of fronds, and so on.

After discussing and exploring fractals with your class,
try making the simple three-dimensional fractal below.

1. Fold an 11" x 17" piece of paper in half vertically
and set the paper in front of you horizontally, with
the fold facing you.

2. Make two vertical cuts about a quarter of the way
in from the sides and about halfway up the paper.

3. Fold the piece between the two cuts up so that it
lines up with the top edge of the paper.

4. Make two more vertical cuts a quarter of the way in
from your last two cuts and halfway up the rest of
the paper.

5. Continue folding and cutting this way as long as
you can! Can you describe the fractal rule for this
activity? In other words, what pattern of actions
are you repeating over and over?

If the paper were large enough, you could repeat
this many times and the pattern would continue!

6. When you can’t cut any more, open up the paper to
see the three-dimensional fractal you’ve created.
Starting with the largest box you can see in the
fractal, reverse some of the folds so the box sticks
out. Then move to the next box and repeat this ac-
tion, and so on until all of the boxes pop up. Enjoy
finding fractals all around you in your world—from
maple leaves to snowflakes!

Fractals and Infinity
Activity Sheet21

1

2

3

4

6

5
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TETRAHEDRAL
FRACTAL

Activity

22

The BIG Idea
We can make our own three-dimensional fractal—but
can we ever be done?

Content Areas in This Activity
• Volume measurement (optional)
• Geometric patterning
• Pattern rules
• Iterative patterns
• Three-dimensional visualization
• Fractal geometry

Process Skills Used in This Activity
• Hypothesizing (optional)
• Problem solving (optional)
• Aesthetics of mathematics

Prerequisite Knowledge and Skills
Activity 21 (helpful)

Age Appropriateness
Even young children can get involved in the creation of
these structures. For example, a seven-year-old cut all the
straws, pipe cleaners, and tissue for the small structure
shown in the photograph on page 133. The first quarter
section (four tetrahedrons) was assembled by an adult,
and the flat faces of the other three sections were assembled
by the child and finished by the adult. The child glued on
all tissue paper. Older children can finish the creation in-
dependently.

The Mathematical Idea
The more mathematicians learn about fractals, the more
interesting they turn out to be. Not only do they provide
an interesting way to talk about things that go on forever,
they are turning out to have many practical applications
in science, such as the study of plant structures or human
blood vessels. Many fractals are also very beautiful. (See
page 125 for a list of websites that contain fractal images.)
In this activity, you and the children will enjoy the beauty
of a three-dimensional fractal that children can easily cre-
ate. This activity also gives children a chance to practice
spatial reasoning in three dimensions.
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Edge: An edge is the straight line that bounds a closed
shape. For flat shapes we usually call these sides, but
in three dimensions we call them edges. For example,
a cube has 12 edges. Think of it as the number of
toothpicks it would take to construct it, or in the case
of this activity, the number of straws!

Equilateral: A figure with all sides equal (which will make
the angles equal, too) is equilateral. We refer to a
triangle with all three sides equal as an equilateral
triangle. We generally call an equilateral rectangle a
square, so we don’t really need the term equilateral in
that context. For pentagons and shapes with more sides
than that, the term regular is generally used to imply
the sides are equal.

Face: The flat outside surfaces of a three-dimensional solid
are called faces. For example, a cube has six faces.

Fractal: The modern mathematician Benoit Mandelbrot
coined this term to refer to self-similar objects. These
are objects that look the same as you get closer and
closer to them, with each smaller part a version of the
whole, but they are not straight lines. For example, a
jagged coastline looks jagged from afar, as it does if
you go closer and closer—the jaggedness repeats even

to the scale of grains of sand from the coastline, which
look jagged under a magnifying glass. It turns out that
nature is full of such objects, such as snowflakes and
ferns. Fractal geometry is a type of mathematics for
describing and constructing such objects.

Iterative process: Repeating a rule over and over, possibly
on a smaller or larger scale, is an iterative process. For
example, take your calculator and enter 1,000 and hit
the square root button again and again. This is an
iterative process that gives a sequence of numbers
converging to 1, so we say that 1 is the limit of this
iterative, or recursive, process.

Polyhedron: A polyhedron is a three-dimensional shape
with polygons as faces. For example, a cube is a
polyhedron with six square faces. The plural of
polyhedron is polyhedra.

Tetrahedron: A three-dimensional shape (polyhedron)
made with four triangular faces is a tetrahedron.

Vertices: The point where two or more edges meet on a
two- or three-dimensional shape is a vertex. For
example, a triangle has three vertices, and a cube has
eight vertices.

HELPFUL TERMS
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Tetrahedral Fractal:
Making It Work

Recall that a polyhedron made with four equilateral
triangles is called a tetrahedron. The basic fractal unit in
this fractal is a tetrahedron. When we put four tetrahe-
drons together (connecting each one at a vertex with a
gap in the center) we create a new tetrahedron (see the
photo below). This new tetrahedron (composed of four
tetrahedrons) can be combined with three others like it to
form yet another tetrahedron (see the photo on page 135).
This is the iterative process that will create the fractal.
This activity works very well for a large group of children
as a collaborative activity.

Objectives

• Children will experience the self-similarity of fractals.

• Children will enjoy creating a great three-dimen-
sional fractal pattern and get a sense of how the
process could theoretically be repeated infinitely.

• Children will build teamwork skills.

Materials
✔ two pipe cleaners and six straws for each single

tetrahedron

✔ 8" x 8" (20 cm x 20 cm) tissue for each face

✔ glue stick for each child or small group

✔ six twist ties (or 4", 10-cm, pieces of string) for each
set of four tetrahedrons you plan to attach together

✔ transparent tape for each group

✔ photocopy of the Sierpinski triangle on page 127
(optional)

✔ photocopy of the Tetrahedral Fractal activity sheet
(on pages 136–137) for each child

Preparation
None

Procedure

1. Have children cut six straws to about 6 inches (15
cm) long, or use the full length for a slightly larger
structure.

Constructing the fractal unit.
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2. Next have children cut each pipe cleaner into four
3-inch (9-cm) pieces.

3. Children then join two straws with one 3-inch pipe
cleaner piece by first folding the pipe cleaner in
half, dabbing glue on each end (including the folded
end), then inserting the folded end into one straw,
and the other two ends into a second straw.

4. They join a third straw, using two more pipe cleaner
pieces, to the other two connected straws to make
a triangle shape. This triangle will be the base of
the tetrahedron.

8. Have the children apply glue along the edges of
each tissue triangle before sticking them on the
straws. If the tissue tears, it may be easier to put
glue on the outer sides of the straws, then press
the tissue on.

9. The children then repeat steps 1 through 8 three
more times to create four tetrahedrons altogether.
As they do, talk about the idea of patterns that
keep going and get bigger and bigger in a poten-
tially never-ending cycle. If you haven’t already
discussed fractals in class, introduce the term
fractal at this point. It might be interesting to com-
pare this fractal to the two-dimensional version,
the Sierpinski triangle shown in the previous ac-
tivity (page 127).

10. They attach their four tetrahedrons together, with
three of them as the base and the fourth on top
(as shown in the photograph on page 133). They
can use twist ties (or more pipe cleaners or string)
to hold or tie vertices of two tetrahedrons together.
They should lift the tissue slightly to allow the
twist tie to pass through the straws to hold the
tetrahedrons in place.

11. After each child makes a tetrahedron as in the
photo on page 133 (one fourth of the structure in
the photo on page 135), then a group of four chil-
dren can combine work to make the larger
tetrahedral structure. They tie vertices in place,
as before, to assemble the structure.

☞The children can use transparent
tape to hold joins in place until the
glue dries. The glue should be
allowed to dry before continuing.

5. Next have children add one more straw at each ver-
tex of the triangle by adding glue to another pipe
cleaner piece folded in half. They then put the
folded end into a new straw, then separate the two
pipe cleaner ends so that they stick out. One end
can go into each of the two straws at the vertex of
the triangle.

6. The three just-added straws can be joined with two
pipe cleaners at the top in the same way.

7. Next they cut the tissue into three triangles, which
will be the sides of each face. The triangle should
be 6" x 6" x 6" (or 15 cm x 15 cm x 15 cm) if using
6-inch straws.
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Suggestions

• Considering that the mathematical importance of
the structure is its self-similarity, continue the con-
struction process until children can see that aspect.

• Using different colors of tissue paper for each unit of
four single tetrahedrons can give an interesting result.

Assessment

Children should be able to discuss the basic idea of a fractal
after doing this activity (and possibly activity 21, on page
124).

Extension Activity
Four of these structures could then be
assembled together in the same way to make
a larger fractal; then four classes could meet
in the gym and put their four pieces together
to make a larger similar structure! This is an
ideal collaborative learning experience. (If
the structure will be huge, you may need to
support the top vertex with a guy wire
hanging from the ceiling.)

Four sections like this one can be connected in the same
pattern to make an even larger fractal, which can be connected
to three other sections of the same pattern to make an even
larger fractal, and so on!
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You are going to create a three-dimensional fractal that
can be made nearly as big as you like. You can get lots of
friends involved and create a huge structure in the gym
or outside, or just make a small one for the table. We’ll
start small.

The basic unit of this fractal is a three-dimensional
shape called a tetrahedron, made of four equilateral tri-
angles. So it has four faces, four vertices, and six edges.
The edges will be made of straws, and the vertices made
with pipe cleaners. Then the top faces are covered with
tissue paper.

1. First cut six straws to the same length, about 6
inches (15 cm) long.

2. Cut each pipe cleaner into four 3-inch (9-cm) pieces.

3. Fold one piece of pipe cleaner in half, dab glue on
each end (including the folded end), and insert the
folded end into one straw, and the other two ends
into another straw.

4. Fold another piece of pipe cleaner, dab glue on each
end, and stick the folded end into one of the two
connected straws. Attach one more straw to the
other end. Now shape the straws into a triangle,
and secure the third join with another pipe cleaner
piece as before.

5. Now prepare three more straws and pipe cleaners
by folding one pipe cleaner piece in half, putting
glue on each end, and inserting the folded end into
the new straw. Separate the two pipe cleaner ends
sticking out and insert one into each straw at the
vertex of your existing triangle. Do this for each
vertex of your triangle.

Tetrahedral Fractal
Activity Sheet

A tetrahedron.

six straws for edges

four pipe cleaners folded
to form vertices

22a
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6. Now join the loose ends of the three new straws
together in a similar way, using two more pipe
cleaner pieces to form the top vertex of the tetra-
hedron. Let the glue dry before continuing. Use
transparent tape to secure the joins until the glue
dries.

7. Cut the tissue into three triangles to cover the
top three faces of the tetrahedron.

8. Apply glue along the edges of each tissue triangle
before sticking them on the straws, or put glue
directly on the straws and press the tissue on.

9. Repeat steps 1 through 8 three more times to cre-
ate four tetrahedrons altogether.

Tetrahedral Fractal
Activity Sheet

10. Attach your four tetrahedrons so that you have
three connected as a base and a fourth resting on
top of the three. Use twist ties (or more pipe clean-
ers or string) to wrap through the straws at two
vertices of two separate tetrahedrons. Lift the tis-
sue slightly to allow the tie to pass through. Do
this until all four are connected.

11. Next, get together with three other children to
connect your tetrahedron structures together, us-
ing twist ties or pipe cleaners, into an even larger
structure. This process can be repeated as many
times as space or time permits. Have fun working
on this one with as many friends as you can find!

22b
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Glossary

algebra: Algebra refers to rules and language for working
with mathematical symbols, such as those that stand
for unknown quantities or geometric objects.

angle: The amount of rotation needed to get from one
direction to another is an angle. Often we speak of the
angle between two lines: This is the amount of rota-
tion needed to get from one line to the other. It is often
measured in degrees. (See also degree.)

area: Area is the number of 1 x 1 squares that it takes to
cover a surface. For example, the area of a 2-inch by
3-inch rectangle is 6 square inches (that is, 2 x 3 = 6);
in other words, it takes six 1-inch by 1-inch squares
to cover it.

base: The number of symbols in a number system is its
base. For example, in base 10 we use the symbols 0, 1,
2, 3, . . . 9, and after 9 we start again at 0 in the ones
column and regroup the one to the next column (tens),
giving 10. Base 10 came about because we have 10
fingers, so it is convenient. If we had only 6 fingers,
maybe our number system would look like this: 0, 1,
2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 20, 21 . . . These
numbers are in base 6. The number 21 in base 6 means
2 x 6 + 1, or 13 in base 10.

carrying: An old-fashioned term for regrouping (see re-
grouping).

circumference: The perimeter of, or distance around, a
circle is called its circumference.

composite number: A number that has whole number
factors is a composite number; in other words, it has
numbers that divide into it with zero remainder other
than 1 and itself. Numbers that do not have such fac-
tors are prime (see prime number). For example, 6 is
composite because it can be divided by 2 and 3, with
zero remainder. Note: By convention, 1 is considered
to be neither prime nor composite.

conservation of area: This term refers to the idea that if
you arrange sections of an area differently, the total
area (the sum of the areas of the pieces) remains the
same.

cube: A three-dimensional object with six
square faces is a cube. All the angles are
90 degrees.

degree: A unit for measuring rotation,
abbreviated as °, is a degree. A complete
rotation is said to be 360 degrees. This
comes from the historical thought that it
took 360 days for the Earth to revolve
once around the sun. Two lines at right angles form
angles of 1/4 rotation, which is 90 degrees (that is, 360
divided by 4).
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diagonals: The lines drawn to connect opposite corners
of a quadrilateral (four-sided) figure, or the lines
connecting any vertex to any other nonadjacent ver-
tex of a figure with more than four sides, are called
diagonals.

diameter: The distance across a circle, through the cen-
ter, is called the diameter.

divisibility: The divisibility of a number describes whether
any numbers can be divided into it with no remain-
der. For example, 10, 15, and 20 are divisible by 5.
The divisibility rule for 5 is that 5 will divide evenly
(with no remainder) into numbers that end in 5 or 0.
(See also factors.)

edge: An edge is the straight line that bounds a closed
shape. For flat shapes, we usually call these sides, but
in three dimensions we call them edges. For example,
a cube has 12 edges—think of it as the number of
toothpicks it would take to construct it.

equation: A mathematical statement with an equals sign
that shows that two quantities have the same measure
is called an equation. It may include unknown quanti-
ties. For example, 9 + 1 = 2 x 5 is an equation, and so
is 2x = 10.

equilateral: A figure with all sides equal
(which will make the angles equal, too) is
equilateral. We refer to a triangle with all
three sides equal as an equilateral triangle.
We generally call an equilateral rectangle a square, so
we don’t really need the term equilateral in that con-
text. For pentagons and shapes with more sides than
that, the term regular is generally used to imply the
sides are equal.

Euclidean geometry: This is a type of geometry of plane
(flat) figures, made famous by the historical mathema-
tician Euclid, who lived 2,300 years ago.

even and odd numbers: Even numbers are divisible by 2,
and odd numbers are not. Two people can share an even
number of objects, but an odd number of objects will
have one object left over.

face: The flat outside surfaces of a three-
dimensional solid are faces. For example,
the prism drawn at the right has five faces,
two of them triangles and three of them
rectangles.

factors: Numbers that divide evenly (with no remainder)
into a number are factors of that number. (See also
divisibility.)

Fermat’s last theorem: Fermat’s last theorem is a result
put forth by French mathematician Pierre de Fermat
several hundred years ago. He observed that there are
lots of examples in which the sum of two squares is a
square (e.g., 32 + 42 = 52) but that this can never hap-
pen for whole numbers to powers greater than 2. For
example, it’s never true that the sum of two cubes is a
cube, when the cubes have whole-numbered sides. So
33 + 43  does not equal 53 or 63 or cubes of any other
whole numbers.

formula: An algebraic rule for getting a result is a formula.
For example, the formula for the area of a rectangle is
length x width = area.

fractal: The modern mathematician Benoit Mandelbrot
coined this term to refer to self-similar objects. These
are objects that look the same as you get closer and
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closer to them, with each smaller part a version of the
whole, but they are not straight lines. For example, a
jagged coastline looks jagged from afar, as it does if
you go closer and closer—the jaggedness repeats even
to the scale of grains of sand from the coastline, which
look jagged under a magnifying glass. It turns out that
nature is full of such objects, such as snowflakes and
ferns. Fractal geometry is a type of mathematics for
describing and constructing such objects.

fractions: Fractions are pieces into which a whole can be
divided. If A has 1/2 of a pizza and B has 1/3 of the pizza,
then C has the remaining 1/6; these three fractions make
up the whole.

Gauss’s formula: Gauss’s formula is one he invented when
asked by a teacher to add up the numbers 1 to 100 as
a punishment. He added them up twice like this:

and saw that for twice the sum he had 100 pairs of
sums of 101. So he calculated the sum as 100 x 101 ÷
2. In general, the formula for the sum of numbers 1 to
n is n (n + 1) ÷ 2.

geometry/geometric: These terms refer to the mathematics
of shapes, in both two and three dimensions. (See also
Euclidean geometry and fractal.)

height: The vertical measure of an object, measured from
the base to the highest point, is its height.

hexagon: A shape with six sides is a hexagon.
A regular hexagon is a shape with six equal
sides.

hypotenuse: This term specifically refers to the side of a
right-angled triangle that is opposite the right angle—
it will be the longest side of the triangle.

hypothesize: Another name for hypothesize is conjecture.
It means to put forth an unproven theory for testing.

infinity: By definition this term is undefinable! We might
try to define it by saying that it is a number bigger
than all numbers, but since there can clearly be no
such number, we have not really defined it. It exists as
a theoretical construct only.

iterative process: Repeating a rule over and over, possibly
on a smaller or larger scale, is an iterative process. For
example, take your calculator and enter 1,000 and hit
the square root button again and again. This is an
iterative process that gives a sequence of numbers
converging to 1, so we say that 1 is the limit of this
iterative, or recursive, process.

Klein bottle: A Klein bottle is an imaginary mathematical
object that is a three-dimensional bottle with a handle
that twists into the fourth dimension and goes back
inside the bottle. So it is a bottle with one surface—no
inside or outside. (See also topology and Moebius strip.)

length: Length is the measure of one dimension of a geo-
metric object, such as one side of a rectangle.

level: Level means flat or parallel to the floor, as in a bal-
anced, or equally weighted, scale.

linear: The term linear refers to a straight, not curved,
line. A linear equation is an equation whose graph is a
straight line.

linear patterns: See patterns.

1 + 2 + 3 + 4 . . . + 100

100 + 99 + 98 + 97 . . . + 1



141

Glossary

measurement: A way of counting or quantifying distance
or area, using a particular unit, is measurement.

Moebius strip: A Moebius strip is a strip of paper (a two-
dimensional object) with a twist in the third dimension
that enables the back to meet the front so it has just
one side. (See also topology and Klein bottle.)

net: A layout of flat faces that fold up into a particular
three-dimensional object is called a net. For example,
you can arrange six squares into a number of nets that
will fold up to construct a cube.

nonlinear patterns: See patterns.

one dimensional: A straight-line path is one dimensional.
The straight-line distance to another spot is a one-
dimensional measurement.

parallelogram: A four-sided (quadrilateral)
shape that has parallel opposite sides
is a parallelogram. Opposite sides are
also equal. A rectangle is a special par-
allelogram in which the angles are 90
degrees.

patterns: Groups of items, such as numbers or shapes,
that are continued in a predictable way are called pat-
terns. Patterns created using shapes are called geometric
patterns. Linear patterns change by the same amount
each time: for example, 2, 4, 6, 8, . . . (changing by 2)
or red, blue, red, blue. Nonlinear patterns change by a
different amount each time: for example, 2, 4, 7, 11,
16, . . . (changing by 2, then 3, then 4, then 5, and so
on) or red, blue, red, blue, blue, red, blue, blue, blue,
. . . Rotational patterns are patterns created by rotating
a shape or image. For example, a minute hand traces a

rotational pattern around a clock face. Second-degree
patterns are nonlinear patterns that have a second-
degree term in them, such as n2.

pentagon: A flat geometric shape (polygon)
with five sides is a pentagon.

pi: This is the name for a special number (3.14159 . . .),
written using the Greek letter π, that is the number of
times you have to multiply the diameter of a circle to
get the circumference. Pi’s decimal expansion goes on
forever.

place value: Place value refers to the idea that a digit’s
column affects its value. For example, a 2 in the ones
column means 2, but a 2 in the hundreds column
means 200.

plane: A flat, or two-dimensional, surface
is called a plane.

polygon: A flat (two-dimensional) shape with straight sides
is a polygon. For example, a hexagon is a polygon with
six sides.

polyhedron: A polyhedron is a three-dimensional shape
with polygons as faces. For example, a cube is a poly-
hedron with six square faces. The plural of polyhedron
is polyhedra.

prime number: A number that has no factors other than
itself and 1 is a prime number. That is, it can’t be divided
evenly (with no remainder) by numbers other than
itself and 1. For example, 5 is prime because 5 = 1 x 5
only, but 6 is not prime because 6 = 2 x 3 as well as
1 x 6.
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probability: The branch of mathematics that has to do
with predicting the likelihood of events is called prob-
ability. For example, when we roll a die, the probability
of rolling a 6 on a single roll is 1/6. There are six possi-
bilities, all equally likely, so each will come up one
sixth of the time.

product: The result we get when multiplying two or more
numbers is called a product. For example, multiplying
2 times 3 gives a product of 6.

proof: A mathematical proof is a sequence of logical de-
ductions to establish the truth of something new from
something we know. If the proof applies to an idea
that includes an infinite number of values, then ex-
amples are not enough to prove something. More
recently, arguments that show an idea by moving
through the range of possibilities (say, with a diagram
on a computer) are being considered as close to math-
ematical proofs, often dubbed dynamic proofs.

proof by counter example: One accepted way to prove
something false is to come up with a counter ex-
ample—an example for which the idea doesn’t hold.
This is considered enough evidence to assert that the
idea doesn’t always work, so it is not universally true.

Pythagorean theorem: This theorem
describes the relationship of squares
drawn on each of the three sides of a
right-angled triangle: The areas of the
two smaller squares added together
will always exactly equal the square
drawn on the longer side (called the
hypotenuse).

recursive solution/recursion: The idea of getting the an-
swer to a repeated process by knowing the previous
term and how much the terms change each time is
recursion. For example, if you know a set of numbers
goes up by 3 each time, and the previous number is
11, then the next number is 11 + 3, or 14.

reflection: Literally, a reflection is what you see when you
look in a mirror, or the “mirror image” of something.
In transformational geometry, reflection involves flip-
ping an object, often to see if it looks the same (or the
opposite) when flipped.

regrouping: A more modern, more accurate term for car-
rying is regrouping, which means moving groups of 10
numbers from one column into the next larger col-
umn. So if a list of numbers adds up to 14 in the ones
column, we write the 4 in the ones column, regroup
the 10 to a 1 in the tens column, and add it there. The
same applies to all columns.

regular and irregular: In polygons, a regular
polygon means one with sides of equal
length. So a square is a regular polygon,
but a rectangle is not (unless it is a square
rectangle). Stop signs (like the one drawn
at the right) are generally regular octagons.
An irregular polygon is one with sides of
unequal length.

rotation: When you move (or turn) an object in a circular
path around a point called the center, you are rotating
the object. For example, the tip of a clock hand rotates
around the center of the clock; it follows a rotational
pattern.

STOP
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rotational pattern: See patterns.

rotational symmetry: Rotational symmetry describes a de-
sign that repeats itself as we trace out the rotation and
is the same every fixed amount.

sample space: In probability, the list of all underlying pos-
sibilities, often with equal probability of occurring, is
called a sample space (not to be confused with the out-
comes of an experiment).  For example, if we roll two
dice, and the outcome is the sum of the two faces,
then there are 36 possible points in the sample space,
all equally likely (with probability 1/36), but there are
11 possible outcomes (the numbers from 2 to 12). The
probability of each outcome is calculated with refer-
ence to the sample space. For example, the probability
of a 4 is 3/36 = 1/12.

second-degree patterns: See patterns.

Sierpinski triangle: A Sierpinski triangle is
a pattern created in a triangle using a
repeated (iterated) rule of joining the mid-
points of each side to create a new triangle
in the middle, then removing the new
triangle (or coloring it black).

soma cube: A 3 x 3 x 3 cube constructed from seven
different shapes made out of four or fewer cubes is a
soma cube.

spatial reasoning: The ability to visualize in all dimen-
sions is called spatial reasoning. Three-dimensional
visualization is one form of spatial reasoning.

square: A polygon (that is, a flat shape) with four equal
sides is called a square.

square numbers: Square numbers represent the areas of
squares that have sides of whole (not fractional) num-
bers. For example, 25 is a square number because it is
the area of a 5 x 5 square.

sum: Sum is a name for the number you get when you add
two or more numbers. For example, the sum of 2 + 5
+ 1 is equal to 8.

symmetrical: A design with parts that are the same on
both sides is a symmetrical design: For example, by
reflecting, we can create a design with two halves that
are mirror images of each other.

tessellation: A geometric pattern created by repeating a
shape that can completely cover a surface forever is called
a tessellation. A tiled floor is a simple tessellation.

tetrahedron: A three-dimensional shape (polyhedron)
made with four triangular faces is a tetrahedron.

theorem: Theorem is a name for a mathematical idea that
can be proven always to be true.

three dimensional: A three-dimensional object isn’t flat
but uses up space (volume). For example, a square is
two dimensional but a cube is three dimensional.

topology: A branch of mathematics that deals with sur-
faces and holes in the surfaces is called topology.
Objects such as a doughnut and a cup are considered
topologically similar because they have the same num-
ber of holes.

transformational geometry: This term refers to the
geometry of moving shapes around. For example,
translations (slides), rotations (turns), and reflections
(flips) are movements that are possible in transforma-
tional geometry.
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translation: Also known as sliding, translation means
moving an object from one position to another in a
straight-line movement.

triangle: A three-sided flat (plane) figure (or polygon) is
called a triangle.

two dimensional: A flat shape (you could draw it on a
piece of paper), or a shape with no thickness, is two
dimensional.

vertices: The point where two or more edges meet on a
two- or three-dimensional shape is a vertex. For ex-
ample, a triangle has three vertices, and a cube has
eight vertices.

volume: The space used by a three-dimensional shape, or
the quantity of material needed to fill it, is that shape’s
volume.

wedge: A pie-shaped fraction of a circle is
called a wedge.

whole numbers: Numbers, such as 0, 1, 2, 3, and so forth,
that do not have decimal places (other than zero) are
whole numbers.

width: The distance across a shape is its width.
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